欢迎登录材料期刊网

材料期刊网

高级检索

本研究提供了一种简易、低成本的工艺和方法,进行神经微电极的性能改进,来改善神经电极/神经组织的界面特性.首先采用光敏型聚酰亚胺(Durimide 7510)作为微电极基质材料制备了一种柔性神经微电极;然后电化学合成导电聚合物聚噻吩PEDOT/LiClO4,进行神经微电极位点的表面修饰;最后测试和评价了神经微电极的表面形貌、电学性能及其生物相容性.结果表明导电聚合物粗糙的菜花状表面形貌提供了更大的界面表面积,因此电极阻抗降低到原来的1/20,微电极的电荷注入能力也增加了约100倍.细胞生物学实验也表明,导电聚合物修饰的柔性微电极上,细胞生长状态良好,与未修饰的柔性微电极下相比,粘附率与存活率均有明显改善,粘附率较修饰前增加了92.5%,存活率也由69.2%提高到85.4%.

参考文献

[1] Cogan SF .Neural stimulation and recording electrodes.[J].Annual review of biomedical engineering,2008(0):275-309.
[2] Williams JC;Rennaker RL;Kipke DR .long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex[J].Brain Research Protocols,1999,4(03):303-313.
[3] Kipke D.R.;Vetter R.J.;Williams J.C.;Hetke J.F. .Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex[J].IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society,2003(2):151-155.
[4] Rousche PJ;Normann RA .Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex.[J].Journal of Neuroscience Methods,1998(1):1-15.
[5] K. D. WISE;D. J. ANDERSON;J. F. HETKE;D. R. KIPKE;K. NAJAFI .Wireless Implantable Microsystems: High-Density Electronic Interfaces to the Nervous System[J].Proceedings of the IEEE,2004(1):76-97.
[6] Humayun MS;de Juan-E Jr;Weiland JD;Dagnelie G;Katona S;Greenberg R;Suzuki S .Pattern electrical stimulation of the human retina.[J].Vision Research: An International Journal in Visual Science,1999(15):2569-2576.
[7] Rizzo JF 3rd;Wyatt J;Loewenstein J;Kelly S;Shire D .Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays.[J].Investigative ophthalmology & visual science,2003(12):5355-5361.
[8] Kovacs GTA.Introduction to the theory,design,and modeling of thin film microelectrodes for neural interfaces[A].London,UK:Academic Press,1994:121-165.
[9] Polikov VS;Tresco PA;Reichert WM .Response of brain tissue to chronically implanted neural electrodes.[J].Journal of Neuroscience Methods,2005(1):1-18.
[10] Nathalie K.Guimard;Natalia Gomez;Christine E.Schmidt .Conducting polymers in biomedical engineering[J].Progress in Polymer Science,2007(8/9):876-921.
[11] Elisabeth Smela .Conjugated Polymer Actuators for Biomedical Applications[J].Advanced Materials,2003(6):481-494.
[12] Cui XY.;Wiler JA.;Anderson DJ.;Martin DC.;Hetke JF. .Electrochemical deposition and characterization of conducting polymer polypyrrole/PSS on multichannel neural probes[J].Sensors and Actuators, A. Physical,2001(1):8-18.
[13] Junyan Yang;David C. Martin .Microporous conducting polymers on neural microelectrode arrays I Electrochemical deposition[J].Sensors and Actuators, B. Chemical,2004(1/2):133-142.
[14] Yang JY;Lipkin K;Martin DC .Electrochemical fabrication of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibrils on microfabricated neural prosthetic devices[J].Journal of biomaterials science,2007(8):1075-1089.
[15] Abidian, MR;Kim, DH;Martin, DC .Conducting-polymer nanotubes for controlled drug release[J].Advanced Materials,2006(4):405-409.
[16] Abidian MR;Martin DC .Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes.[J].Biomaterials,2008(9):1273-1283.
[17] Groenendaal BL.;Freitag D.;Pielartzik H.;Reynolds JR.;Jonas F. .Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future [Review][J].Advanced Materials,2000(7):481-494.
[18] Cui XY.;Martin DC. .Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays[J].Sensors and Actuators, B. Chemical,2003(1/2):92-102.
[19] 周洪波,李刚,张华,孙晓娜,姚源,金庆辉,赵建龙,任秋实.简易低成本柔性神经微电极制作方法[J].光学精密工程,2007(07):1056-1063.
[20] Zhou HB;Li G;Sun XN et al.Fabrication of pyramidshaped three-dimensional flexible microelectrode array for improved neural interfacing[J].SENSOR LETTERS,2009,1:102-109.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%