核子(强子)是夸克、胶子的束缚态,由量子色动力学QCD描述。由于QCD的基本特性(高能标度下的渐近自由、低能标度下色禁闭及动力学手征对称性破缺),对核子(强子)结构和性质的QCD图象是标度相关的.在高能标度下描述强子的是与探测强子结构的硬过程相联系的QCD部分子模型.强子的夸克、胶子结构信息通过QCD部分子求和规则得到.QCD微扰论是适用的理论.在低能标度时,必须发展QCD非微扰途径来描述核子(强子)物理.这里简要地讨论各种非微扰途径(格点QCD、Dyson-Schwinger方程、有效场论、QCD求和规则)的某些结果和进展,并指出QCD真空结构在描述低能标度下强子物理中担任重要角色.
The nucleon (hadron) is the bound state of guarks and gluons, which is described by thequantum chromodynamics (QCD). Due to the basic properties of QCD (the asymptotic freedom at thehigh-energy scale, the color-confinement and the dynamical chiral-symmetry breaking at the low-energyscale), the QCD picture for the nucleon's (hadron's) structure and property is scale-dependent. At high-energy scale, the QCD parton model, which is relative to the hard process for testing the hadron structure,is used to describe the hadron. The information about hadron's structure and property can be extractedthrough the QCD parton sum rules. QCD perturbation theory is suitable and powerful at high-energyscale. At low-energy scale, QCD nonperturbative approach must be developed to be used to describe thenucleon (hadron). Here we briefly discuss some results and progresses of various nonperturbative ap-proaches (lattice QCD, Dyson-Schwinger equation, the effective field theory, QCD sumrules), and pointout that QCD vacuum structure plays an important role in describing hadron physics at low-energy scale.
参考文献
[1] | Close F E. An Introduction to Quarks and Partons. London New York San Francisco: Academic Press,1979, 文献在内. |
[2] | Politzer H D. Asymptotic Freedom: An approach to strong Interactions. Phys Rep, 1974, C14: 129~180. |
[3] | Feynman R P. Very High-energy Collisions of Hadrons. Phys Rev Lett, 1969, 23: 1 415~1 417. |
[4] | Gottfried K. Sum Rule for High-energy Electron-proton Scattering. Phys Rev Lett, 1967, 18:1 174~1 177. |
[5] | Amaudruz P, Arneodo M, Arvidson M et al (NMC Collaboration). Cotffried Sum from the Ratio Fn2/Fp2. Phys Rev Lett, 1991, 66:2 712~2 715. |
[6] | Bjorken J D. Applications of the Chiral U (6) U(6) Algebra of Current Densities. Phys Rev, 1966, 148:1 467~1 478. |
[7] | Jaffe R L,Ji X. Chiral-odd Patton Distributions and Polarized Drell-Yan Process. Phys Rev Lett, 1991, 67: 552~555. |
[8] | Field R D. Application of Perturbative QCD. Addison-Wes-ley Publishing Company, lnc 1989, 文献在内. |
[9] | Ji X. Gange-invariant Decomposition of Nucleon Spin. Phys Rev Lett, 1997, 78: 610~613. |
[10] | Adams D, Adeva B, Arik E et al (Spin Muon Collaboration). Spin Structure of the Proton from Polarized Inclusive Deep-inelastic Muon-proton Scattering.Phys Rev,1997,D56:5 330~5 358. |
[11] | EMC, AshmanJ, Badelek B, Baum G et al. A Measurement of the Spim Asymmetry and Determination of the Structure Function g1 in Deep Inelastic Muon-proton Scattering. Phys Lett, 1988, B206: 364~370. |
[12] | Born K D, Laermann E, Pirch N et al. Hadron Properties in Lattice QCD with Dynamical Fermions. Phys Rev, 1989, D40:1 653~1 663. |
[13] | Liu K F, Dong S J, Draper T. Valence QCD: Connecting QCD to the quark model. Phys Rev, 1999, 59D: 112 001-1 ~26. |
[14] | Aoki S, Doui M, Hatsuda T et al Tensor Charge of the Nucleon in Lattice QCD. Phys Rev, 1997, 56D: 433~436. |
[15] | Roberts C D, Williams A G. Dyson-Schwinger Equations and Their Application to Hadronic Physics. Prog Part Nucl Phys, 1994, 33: 477~575. |
[16] | He H X. Identical Relations among Transverse Parts of Variant Green Functions and the Full Vertices in Gange Thories. E-print: hep-ph/9910373. |
[17] | Ebert D, Reinhardt H, Volkov M K. Effective Hadron Theoy of QCD. Prog Part Nucl Phys, 1994, 33: 1~20. |
[18] | He H X, Ji X. Tensor Charge of the Nucleon. Phys Rev,1995, D52:2 960~2 963. |
[19] | He H X, Ji X. QCD Sum Rule Calculation for the Tensor Charge of the Nucleon. Phys Rev, 1996, D54:6 897~6 902. |
[20] | He H X. Nonperturbativc Condensate Contributions to the Effective Quark-Gluon Coupling. Z Phys, 1996, C69:287~295. |
[21] | 何汉新.组分夸克模型与量子色动力学间的联系.科学通报,1996,41:1375~1 378. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%