研究表明,保证经典轨道具有封闭性的Bertrand定理可以进一步推广,在适当的角动量下,仍存在着非椭圆的闭合轨道.对于屏蔽Coulomb场,可获得广义Runge-Lenz矢量.这种轨道封闭性与径向Schr?dinger方程因式分解相对应.
It is shown that for a particle with suitable angular momenta in the screened Coulomb poten-tial or isotropic harmonic potential, there still exists closed orbits rather than ellipse, characterized by theconserved perihelion and aphelion vectors, i.e. , extended Runge-Lenz vector, Which implies a higher dy-namical symmetry than the geometrical symmetry SO3. For the potential, factorization of the radialSchrodinger equation to produce raising and lowering operators is also pointed out.
参考文献
[1] | Goldstein H. Classical Mechanics, 2nd ed. Addison-Wesley,New York, 1980. |
[2] | DeLange O L, Raab R E. Operator Methods in Quantum Mechanics. Clarendon, Oxford, 1991. |
[3] | Cooper F, Khare A, Sukhatme U P. Supersymmetry and Quantum Mechanics. Phys Rep, 1995, 251: 267~385. |
[4] | Liu Y F, Lei Y A, Zeng J Y. Factorization of the Radial Schrodinger Equation and Four Kinds of Raising and Lowering Operators of Hydrogen Atoms and Isotropic Harmonic Oscillators. Phys Lett, 1997, A231: 9~12. |
[5] | Runge C. Vektoranalyses. Hirzel, Leipzig, 1919, 1: 70; Lenz W. Uber den Bewegungsverlauf und die Quantenzustande der Gestorten Keplerbewegung. Z Phys, i924, 24: 197~207;Laplace P S. Traite de Mechnique Celeste. Villars, Paris,1799, I. |
[6] | Pauli W. Uber das Wasserstroffspektrum yom Standpunkt der Neuen Quantenmechanik. Z Phys, 1926, 36: 336~363. |
[7] | 曾谨言.量子力学.卷二,北京:科学出版社,1997. |
[8] | Liu Y F, Huo W J, Zeng J Y. Connection between the Closeness of Classical Orbits and Factorization of the Radial Schrddinger Equation. Phys Rev, 1998, A58: 852~868. |
[9] | Wu Z B, Zeng J Y. Extension of Bertrand's Theorem and Factorization of the Radial Schrodinger Equation. J Math Phys,1998, 39:5 253~5 259. |
[10] | Wu Z B, Zeng J Y. Modification of Bertrand′s Theorem and Extended Runge-Lenz Vector. Chin Phys Lett, 1999, 16:781~783. |
[11] | Quigg C, Rosner J L. Quantum Mechanics with Application to Quarkonium. Phys Rep, 1979, 56: 167~235. |
[12] | 钱伯初,曾谨言.量子力学习题精选解析.北京:科学出版社,1990. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%