利用推广Gross-Pitaevskii方程,分别研究了(2+1)维时空和3维空间的Bose-Ein stein凝聚体中涡旋的拓扑结构. 这一推广的方程能够被用于非均匀并且高度非线形的Bose-Einstein凝聚系统. 利用Φ映射拓扑流理论,给出了基于序参数的涡旋速度场,以及该速度场的拓扑结构. 最后,仔细地探讨了这两种Bose-Einstein系统中涡旋的各种分支条件.
We studied the topological structure of vortex in the Bose-Einstein condensation with a generalized Gross-Pitaevskii equation in (2+1)-dimensional space-time and 3-dimensional space, respectively. Such equation can be used in discussing Bose-Einstein condensates in heterogeneous and highly nonlinear systems. An explicit expression for the vortex velocity field as a function of the order parameter field is derived in terms of the Φ-mapping theory,and the topological structure of the velocity field is studied. At last,the branch conditions for generating, annihilating,crossing,splitting and merging of vortex in two kinds of Bose-Einstein systems are given.
参考文献
[1] | Anderson M H,Ensher J R,Matthews M R,et al. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor[J]. Scie nce,1995,269: 198-201. |
[2] | Bradley C C,Sackett C A,Tollett J J,et al. Evidence of Bose-Einstein Condensaton in an Atomic Gas with Attractive Interactions[J]. Phys Rev Lett,1995,75: 1 687-1 690. |
[3] | Davis K B,Mewes M O,Andrews M R,et al. Bose-Einstein Condensation in a Gas of Sodium Atoms[J]. Phys Rev Lett,1995,75: 3 969-3 973. |
[4] | Dalfovo F,Giorgini S,Pitaeveskii L P,et al.Theory of Bose-Einstein Condensation in Trapped Gases[J]. Rev Mod Phys,1999,71: 463-512. |
[5] | Kolomeisky E B,Newman T J,Straley J P,et al. Low-dimensional Bose Liquids: Beyond the Gross-Pitaevskii approximation[J]. Phys Rev Lett,2000,85: 1 146-1 149. |
[6] | Duan Y S,Li S,Yang G H. The Bifurcation Theory of the Gauss-Bonnet-Chern Topological Current and Morse Function[J].Nucl Phys,1998,B514: 705-720. |
[7] | Duan Y S,Zhang H,Li S. Topological Structure of the London Equation[J]. Phys Rev,1998,B58: 125-128. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%