欢迎登录材料期刊网

材料期刊网

高级检索

利用推广Gross-Pitaevskii方程,分别研究了(2+1)维时空和3维空间的Bose-Ein stein凝聚体中涡旋的拓扑结构. 这一推广的方程能够被用于非均匀并且高度非线形的Bose-Einstein凝聚系统. 利用Φ映射拓扑流理论,给出了基于序参数的涡旋速度场,以及该速度场的拓扑结构. 最后,仔细地探讨了这两种Bose-Einstein系统中涡旋的各种分支条件.

We studied the topological structure of vortex in the Bose-Einstein condensation with a generalized Gross-Pitaevskii equation in (2+1)-dimensional space-time and 3-dimensional space, respectively. Such equation can be used in discussing Bose-Einstein condensates in heterogeneous and highly nonlinear systems. An explicit expression for the vortex velocity field as a function of the order parameter field is derived in terms of the Φ-mapping theory,and the topological structure of the velocity field is studied. At last,the branch conditions for generating, annihilating,crossing,splitting and merging of vortex in two kinds of Bose-Einstein systems are given.

参考文献

[1] Anderson M H,Ensher J R,Matthews M R,et al. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor[J]. Scie nce,1995,269: 198-201.
[2] Bradley C C,Sackett C A,Tollett J J,et al. Evidence of Bose-Einstein Condensaton in an Atomic Gas with Attractive Interactions[J]. Phys Rev Lett,1995,75: 1 687-1 690.
[3] Davis K B,Mewes M O,Andrews M R,et al. Bose-Einstein Condensation in a Gas of Sodium Atoms[J]. Phys Rev Lett,1995,75: 3 969-3 973.
[4] Dalfovo F,Giorgini S,Pitaeveskii L P,et al.Theory of Bose-Einstein Condensation in Trapped Gases[J]. Rev Mod Phys,1999,71: 463-512.
[5] Kolomeisky E B,Newman T J,Straley J P,et al. Low-dimensional Bose Liquids: Beyond the Gross-Pitaevskii approximation[J]. Phys Rev Lett,2000,85: 1 146-1 149.
[6] Duan Y S,Li S,Yang G H. The Bifurcation Theory of the Gauss-Bonnet-Chern Topological Current and Morse Function[J].Nucl Phys,1998,B514: 705-720.
[7] Duan Y S,Zhang H,Li S. Topological Structure of the London Equation[J]. Phys Rev,1998,B58: 125-128.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%