采用近来在研究核基态中极为成功的相对论模型研究有限核的同位旋巨单极共振, 从而给出核物质的不可压缩性系数. 讨论了建立在相对论平均场基态上的相对论无规位相近似的自洽处理. 自洽要求基态和巨共振激发态的研究从同一个有效拉氏量出发. 与相对论平均场的无海近似自洽, 相对论无规位相近似不仅要包含正能态的粒子-空穴激发, 还必须考虑 Fermi海核子态和Dirac海核子态激发的贡献. 用约束的相对论平均场方法得到核的巨单极共振的能量逆权重的求和规则, 验证Dirac海核子态的贡献. 比较理论计算和实验测量的巨单极共振的能量得到核物质的不可压缩性系数为250-270 MeV.
参考文献
[1] | Shlomo S, Youngblood D H. Nuclear Matter Compressib Ility from Isoscalar Giant Monopole Resonance[J]. Phys Rev, 1993, C47: 529-536. |
[2] | Blaizot J P, Berger J F, Decharge J, et al. Micros Copic and Macroscopic Determinations of Nuclear Compressibility [J]. Nucl Phys, 1995, A591: 435-457. |
[3] | Abdalla M C B, Gadelha A L, Vancea I V. Duality betwee n Coordinates and Dirac Field [J]. Phys Lett, 2000, B485: 362-366. |
[4] | Dawson J F, Furnstahl R J. Relativistic Spectral R andom-phase Approximation in Finite Nuclei[J]. Phys Rev, 1990, C42: 2 009-2 022. |
[5] | Ma Z Y, Giai N V, Toki H. Compressibility of Nucle ar Matter and Breathin g Mode of Finite Nuclei in a Relativistic Model[J]. Phys Rev, 1997, C55: 2 385-2 38 8. |
[6] | Ma Z Y, Giai N V, Wandelt A, et al. Is oscalar Compression Modes in Relativistic Random Phase Approximation[J]. Nu cl Phys, 2001, A686: 173-186. |
[7] | Ring P, Ma Z Y, Giai N V, et al. The Time-dependent Relativistic Mean-field Theory and the Random Phase Approx imation[J]. Nucl Phys A, in press. |
[8] | Bertsch G F, Tsai S F. A Study of the Nuclear Resp onse Function[J]. Phys Reports, 1975, 18: 125-158. |
[9] | Reinhard P G, Rufa M, Maruhn J, et al. Nuclear Ground-state Properties in a Relativistic Mson-field Theoy[J]. Z Phys, 1986, A323: 13-25. |
[10] | Lalazissis G A, Koenig J, Ring P. New Parametriza Tion for the Lagra Ngian Density of Relativistic Mean Field Theory[J]. Phys Rev 1997, C55: 540-543. |
[11] | Sugahara Y, Toki H. Relativistic Mean-field Theo ry for Unstable Nuclei with Non-linear and Terms[J]. Nucl Phys, 1994, A57 9: 557-572. |
[12] | Sharma M M, Nagarajan M A, Ring P. Rho Meson Coupling in the Relativistic Mean Field Theory and Description of Exotic Nuclei[J]. Phys Lett, 1993, B312: 377-381. |
[13] | Horowitz C J, Serot B D. Self-consistent Hartree Description of Finite Nuclei in a Relativistic Quantum Fiels Theory[J]. Nucl Phys, 1981, A368: 503-528. |
[14] | Vretenar D, Lalazissis G A, Behnsch R, et al. M onopole Gia nt Resonances and Nuclear Compressibility in Relativistic Mean Field Theory[J ]. Nucl Phys, 1997, A621: 853-878. |
[15] | Youngblood D H, Clark H L, Lui Y W. Incompressibility of Nuclear Matter from the Giant Monopole Resonance[J]. Phys Rev Lett, 1999, 82: 691-694. |
[16] | Ma Z Y, Toki H, Giai N V, Giant Resonances in the Relativistic RPA with Non-linear Interactions[J]. Nucl Phys, 1997, A627: 1-13. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%