欢迎登录材料期刊网

材料期刊网

高级检索

简要介绍了几种关于中高能质子入射引起散裂反应产物理论计算的方法, 以及这些方法的最新发展. 比较了这些方法在理论计算中的特点, 指出经典外推方法有局限性, 量子分子动力学方法和改进后的M-C方法的计算结果与实验数据有较好的符合, 但是计算量大, 而且量子分子动力学方法在与宏观输运理论连接上存在不少的困难. 半经验计算方法已经取得了初步的成果, 需要根据新的实验结果来对其进行发展.

参考文献

[1] 樊胜, 于洪伟, 申庆彪等. 与散裂中子靶物理相关的理论计算程序探讨(I薄靶计算)[J]. 原子核物理评论, 2002, 19(3): 329.
[2] Silberberg R, Tsao C H. Improved Cross Section Calculations for Astrophysical Applications[J]. Astrophysical J Supp, 1985, 58: 873.
[3] 濮祖荫. 空间物理前沿进展[M]. 北京: 气象出版社, 1998, 16-39.
[4] Bawman C D, Arthur E D,Lisowski P W, et al. Nuclear Energy Generation and Waste Transmutation Using an Accelerator-driven Intense Thermal Neutron Source[J]. Nucl Instr and Meth, 1992, A320: 336.
[5] Rubbia C, Rubio J A, Buono S, et al. Conceptual Design of a Fast Neutron Operated High Power Energy Amplifier[R]. CERN/AT/95-44(ET), 1995.
[6] Michel R, Bodemann R, Busemann H, et al. Cross Sections for the Production of Residual Nuclides by Low- and Medium-energy Protons from the Target C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba, and Au[J]. Nucl Instr and Meth, 1997, B129: 153.
[7] Gloris M, Michel R, Sudbrock F, et al. Proton-induced Production of Residual Radionulides in Lead at Intermediate Energies[J]. Nucl Instr and Meth, 2001, A463: 593.
[8] Blann M, Vonach H K. Global Test of Modified Procompound Decay Models[J]. Phys Rev, 1983, C28: 1 475.
[9] Young P G, Arthur E D, Chadwick M B. Comprehensive Nuclear Model Calculations: Introduction to the theory and use of the GNASH code[R]. LA-12343-MS,1992.
[10] Koning A. TALYS, a Nuclear Reaction Code[R]. The Working Party of JEFF Project, Vienna, May 16, 2001.
[11] 张正军, 申庆彪, 韩银录等. p + 209Bi核反应微观数据的理论计算[J]. 高能物理与核物理, 2002, 26(6): 600.
[12] 张正军. ADS相关的核反应理论研究及微观数据计算[D]. 西安: 西北大学, 2002.
[13] Hartnack C, Li Zhuxia , Peilert G, et al. Quantum Molecular Dynamics a Microscopic Model from Unilac to CERn Energies[J]. Nucl Phys, 1989, A495: 320.
[14] Aichelin J, Peilert G, Bohnet A, et al. Quantum Molecular Dynamics Approach to Heavy Ion Collisions: Description of the model, comparison with fragmentation data, and the mechanism of fragment formation[J]. Phys Rev, 1988, C37: 2 451.
[15] Aichelin J. Quantum Molecular Dymanics - A Dynamics Microscopic n-body Approach to Investigate Fragment Foration and the Nuclear Equation of State in Heavy Ion Collisions[J]. Phys Reports, 1991, 202(5-6): 233.
[16] Sangster T C, Britt H C, Fields D F, et al. Intermediate Mass Fragment Emission in Fe + Au Collisions[J]. Phys Rev, 1992, C46: 1 404.
[17] Peilert G, Konopkaet J, Stocker H, et al. Dynamical Treatment of Fermi Motion in a Microscopic Description of Heavy Ion Collision[J]. Phys Rev, 1992, C46: 1 457.
[18] Niita K, Chiba S, Maruyama T, et al. Analysis of the (n, xn') Reactions by Quantum Molecular Dynamics Plus Statistical Decay Model[J]. Phys Rev, 1995, C52: 2 620.
[19] Chadwick M B, Chiba S, Niita K, et al. Quantum Molecular Dynamics and Multistep-direct Analyses of Multiple Preequilibrium Emission[J]. Phys Rev, 1995, C52: 2 800.
[20] Chiba S, Chadwick M B, Niita K, et al. Nucleon-induced Preequilibrium Reactions in Terms of the Quantum Molecular Dynamics[J]. Phys Rev, 1996, C53: 1 824.
[21] Chiba S, Iwamoto O, Fukahori T, et al. Analysis of Proton-induced Fragment Production Cross Sections by Quantum Molecular Dynamics Plus Statistical Decay Model[J]. Phys Rev, 1996, C54: 285.
[22] Chiba S, Iwamoto O, Fukahori T, et al. Time Scale of the Preequilibrium Process in Intermediate-energy Nucleon-induced Reactions[J]. Phys Rev, 1996, C54: 3 302.
[23] Fan Sheng, Li Zhuxia, Zhao Zhixiang, et al. Analysis of Proton-induced Reactions on 208Pb with Incident Energies 590 and 322 MeV[J]. Eur Phys J, 1999, A4: 61.
[24] Fan Sheng, Li Zhuxia, Zhao Zhixiang. Analysis for Cross Section of (p, xn) Reaction by Quantum Moclecular Dynamics[J]. Nucl Sci and Eng, 2002, 142: 195.
[25] Fan S, Li X , Xiao Y. Fragment Distribution Analysis of Proton-induced Reactions with Intermediate Energy Using QMD Plus Fission Models[J]. Nucl Sci and Eng, 2001, 137: 89.
[26] Fan Sheng, Li Zhuxia, Zhao Zhixiang, et al. Analysis for Fragment Products Proton-induced Reactions on Pb with Energy up to 1.6 GeV[J]. J Nucl Sci and Tech, 2002, Supplement 2, August,1 210.
[27] 樊胜, 李祝霞. 中能质子在重核上的反应机制研究[J]. 高能物理与核物理, 2000, 24(8): 755.
[28] 肖玉衡, 樊胜. 中高能质子入射碎片质量分布研究[J]. 高能物理与核物理, 2002, 26(12): 1 247.
[29] Armstrong T M, Alsmiller R G. Monte Carlo Calculations of High-energy Nucleon-meson Cascades and Comparison with Experiment[R]. ORNL-Tm-3667, 1972.
[30] Bertini H W, Guthrie M P. Instructions for the Operation of Codes Associated with MECC-7, A Preliminary Version of an Intranuclear-cascade Calculation for Nuclear Reactions[R]. ORNL-4564, 1971.
[31] Prael R E, Lichtenstein H. User Guide to LCS: The LAHET code system[R]. LANL Report No. LA-UR-89-3014, Los Alamos, 1989, http: //www-xdiv.lanl.gov/XTM/LSC/lahet-doc.html.
[32] Yariv Y, Fraenkel Z. Intranuclear Cascade Calculation of High Energy Heavy Ion Collisions: Effect of interactions between cascade particles[J]. Phys Rev, 1981, C24: 488.
[33] Briesmeister J F. MCNP - A General Monte Carlo n-particle Transport Code Version 4B[R]. LA-12625-M, Los Alamos National Laboratory, 1997.
[34] Prael R E, Madland D G. LAHET Code System Modifications for LAHET2.8[R]. LA-UR-95-3605, 1995.
[35] Mshnik S G, Sierk S J, Bersillon O, et al. Cascade-exciton Model Detailed Analysis of Proton Reduced Reactions from 10 MeV to 5 GeV[J]. Nucl Instr and Meth, 1998, A414: 68.
[36] Dementyev A, Sobolevsky N M. SHIELD-universal Monte Carlo Hadron Transport Code: Scope and applications, radiation measurements[J]. Nucl Phys, 1999, 30: 553.
[37] Gudima K K, Mshnik S G, Toneev V D, et al. Cascade-exciton Model of Nuclear Reactions[J]. Nucl Phys, 1983, A401: 329.
[38] Dementyev A, Gurentsov V, Ryazhskaya O, et al. Production and Transport of Hadrons Generated in Nuclear Cascade Initiated by Muons in the Rock[J]. Nucl Phys, 1999, Proc Suppl, B70: 486.
[39] Mashnik S G, Sierk A J. Cascade-exciton Model Detailed Analysis of Proton Spallation at Energies from 10 MeV to 5 GeV[R]. LANL Report, LA-UR-97-2905, 1997.
[40] Mashnik S G, Sierk A. Recent Developments of the Cascade-exciton Model of Nuclear Reaction[J]. J Nucl Sci and Tech, 2002, Supplement 2, Augus, 720.
[41] Fan S, Rong J, Zhang H, et al. The Fragment Distribution of Nb, Au and Pb from Proton-induced Reactions with Energies Range from 100 MeV to 3 GeV[J]. Nucl Sci and Eng, to be pubished in July, 2002.
[42] Shiori Furihata, Koji Niita. The GEM Code- A Simulation Program for the Evaporation and Fission Processes of the Excited Nucleus[R]. JAERI-Data/Code, 2001-015, 2001.
[43] Silberberg R, Tsao C H. Partial Cross-section in High-energy Nuclear Reactions, and Astrophysical Applications. I. Targets with Z<28[J]. Astrophysical J Supp, 1973, 220(I), 25: 315.
[44] Silberberg R, Tsao C H. Spallation Processes and Nuclear Interaction Products of Cosmic Rays[J]. Phys Report, 1990, 191(6): 351.
[45] Suemmerer K, Blank B. Modified Empirical Parametrization of Fragmentation Cross Sections[J]. Phys Rev, 2000, C61: 034607.
[46] Suemmerer K, Bruechle W. Target Fragmentation of Au and Th by 2.6 GeV Protons[J]. Phys Rev, 1990, C42: 2 546.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%