本文提出了一个通过量子计算网络来对三个未知量子态同时进行量子远距传态(teleportation)的方案,对比以前的远距传态方案,本方案不仅效率高,更符合量子远距传态(teleportation)的原始定义,而且容易扩展到同时传输多个未知量子态和多粒子最大纠缠态.
参考文献
[1] | Bennett C H et al. Experimental quantum cryptography [J]. J. Cryptology, 1992, 5(1): 3~28 |
[2] | Berman G P et al. Introduction to Quantum Computer [M]. Singapore: World Scientific Publishing Co, 1998. |
[3] | Bennett C H, Brassard G, Crepeau C et al. Telepqrting an unknown quantum state via dual classical and EinsteinPodolsky-Rosen channels [J]. Phys. Rev. Lett., 1993, 70(13): 1895~1898 |
[4] | Vaidman L,Yoran N. Methods for reliable teleportation [J]. Phys. Rev. A, 1999, 59(1): 116~125 |
[5] | Shor P W. Algorithms for quantum computation [C]. 95th Annual Symposium of Foundation of Computer Science.Proceeding IEEE Computer Society Press, 1994, 116~123 |
[6] | Grover L R. Quantum mechanics helps in searching for a needle in a haystack [J]. Phys. Rev. Lett., 1997, 79(2):325~328 |
[7] | Sleator T, Weinfurther H. Realizable universal quantum logic gate [J]. Phys. Rev. Lett., 1995, 74(20): 4087~4090 |
[8] | Feynman R P. Simulating physics with computers [J]. Int. J. Thero. Phys., 1982, 21:467~488 |
[9] | Brassard G, Braunstein S L, Cleve R. Teleportation as a quantum computation [J]. Physica D, 1998, 120(1): 43~47 |
[10] | Feng Mang, Zhu Xiwen et al. Teleportation of two quantum states via the quantum computation [J]. Chin. Phys.Lett., 2000, 17(3): 168 |
[11] | Monroe C et al. Demonstration of a fundamental quantum logic gate [J]. Phys. Rev. Lett., 1995, 75(20): 4714~4717 |
[12] | Knill E et al. An algorithmic benchmark for quantum information processing [J]. Nature, 2000, 404:368 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%