借助线性量子变换(LQT)理论,对n模玻色和费米子的二次型哈密顿量,我们给出了简洁的对角化形式.并且指出,对于n模玻色子耦合二次型哈密顿量,通过一个负幺正矩阵(它是复辛群SP(2n,c)的元素)可以把它对角化;对n模费米子耦合二次型哈密顿量,通过一个幺正矩阵(它是复费米群F(2n,c)的元素)可以把它对角化.
参考文献
[1] | Bogoliubov N N, Bogoliubov N N Jr. Introduction to Quantum Statistics [M]. (Chinese version), 1994. |
[2] | Blaizot J P. Quantum Theory of Finite Systems [M]. Massachusetts: MIT Press, 1986. |
[3] | Zhang Yongde, Tang Zhong. General theory of linear quantum transformation in Bargmarm-Fock space [J]. Nuovo Cimento. B, 1994, 109:387 |
[4] | Zhang Yongde, Tang Zhong. Quantum transformation theory on Fermion Fock space [J]. J. Math. Phys., 1993,34:5639 |
[5] | Wang Xiangbin, Yu Sixia, Zhang Yongde. Linear quantum transformation and normal product calculation of Boson exponential quadratic operators [J]. J. Phys. A. Math. Gen., 1994, 27:6563 |
[6] | Pan Jianwei, Zhang Yongde, Wang Xiangbin et al. Some addenda about the general formula of normal product calculation for Boson exponential quadratic operators [J]. Commun. Theor. Phys., 1996, 26:479 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%