欢迎登录材料期刊网

材料期刊网

高级检索

本文采用行波解法求解了集总放大光纤孤子系统脉宽为皮秒量级含放大器增益的非线性薛定谔方程,得到了近似形式的解析解,并得到了孤子振幅、中心位置、相位的演化方程,在此基础上统一地研究了孤子传输的稳定性问题,得到了在集总放大光纤孤子系统中孤子能稳定传输的结论.

参考文献

[1] Mears R J, Reekie L, Jauncey I M et al. Low noise erbium-doped fiber amplifier operating at 1.54μm [J]. Electron.Lett, 1987, 23(19): 1026-1028
[2] Nakazawa M, Suzuki Kimura Y. 20 GHz soliton amplification and transmission with an er-doped fiber [J]. Opt.Lett, 1989, 14(19): 1065-1067
[3] Mollenauer L F, Evangelides S G, Haus H A. Long distance soliton propagation using lumped amplifiers and dispersion-shifted fiber [J]. J. Lightwave Technol, 1991, 9(2): 194-196
[4] Shiojiri E and Fujii Y. Transmission capability of an optical fiber ccommunication system using index nonlinearity [J]. Appl. Opt., 1985, 24(3): 358-360
[5] Kuboat H, Nakazawa M [J]. Long-distance optical soliton transmission with lumped amplifiers [J]. IEEE J .Quantum Electron, 1990, 26(4): 692-670
[6] Christensen B, Jacobsen G, Bodtker E et al. 4 Gb/s soliton communication on standard non dispersion-shifted fiber [J]. IEEE Photo. Technol, 1994, 6(1): 101-103
[7] Knox F M, Forysiak W, Doran N J. 10 Gbt/s soliton communication system over standard fiber at 1.55μm and the use of dispersion compensation [J]. J. Lightwave Technol, 1995, 13(10): 1955-1962
[8] Nakazawa M, Yoshida E, Suzuki K et al. 80 Gbit/s soliton data transmission over 500 km with unequal amplitude solitons for timing clock extraction [J]. Electron. Lett, 1994, 30(21): 1777-1778
[9] Doran N J, Smith N J. Picosecond soliton transmission using concatenated nonlinear optical loop-mirror intensity filters [J]. J. Opt. Soc. Am. B, 1995, 12(6): 1117-1125
[10] Matsumoto M, Hasegawa A, Kodama Y. Adiabatic amplification of solitons by means of nonlinear amplifying loop mirrors [J]. Opt. Lett, 1994, 19(14): 1019-1021
[11] 杨祥林,温扬敬.光纤孤子通信理论基础[M].国防工业出版社,2000.147-149
[12] Lai Y. Noise analysis of soliton communication system-A new approach [J]. J. Lightwave Technol, 1993, 11(3):462-467
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%