欢迎登录材料期刊网

材料期刊网

高级检索

本文用不变量理论精确求解了弱耦合玻色气体含时Schrodinger方程并研究了其时间演化问题.由于含时系统的Bogoliubov变换会导致弱耦合玻色气体准粒子表象完备基矢组存在无法自定的含时相位因子,本文通过计算玻色气体微扰前粒子数表象与准粒子表象间的变换系数,获得了弱耦合玻色气体准粒子表象的完备基矢组从而解决了这一困难.

参考文献

[1] Craig M S, Mukunda P D. Bose-Einstein Condensation [M]. Singapore: World Scientific, 2000. 153-188
[2] Huang K S. Variational Thomas-Fermi theory of a nonuniform Bose condensate at zero temperature [OL]. Cond mat/9609234v1 1996, 1-25
[3] Zhang L, Ge M L. Progress in the Frontier of Quantum Mechanics [M]. Beijing: Tsinghua Press, 2000
[4] Griffin A, Snoke D W, Stringari S, et al. Bose-Einstein Condensation [M]. London: Cambrige University Press, 1995
[5] Gao X C, Xu J B, Qian T Z. Geometric phase and the generalized invariant formulation [J]. Phys. Rev. A, 1991, 44(11): 7016-7021
[6] Gao X C, Gao J, Qian T Z, et al. Quantum-invariant theory and the evolution of a quantum scalar field inRobertson-Walker flat spacetimes [J]. Phys. Rev. D, 1996, 53:4374-4381
[7] Gurvitz S A, Prager Y S. Microscopic derivation of rate equations for quantum transport [J]. Phys. Rev. B, 1996, 53:23-30
[8] Gurvitz S A, Lipkin H J, Prager Y S. Rate equations for quantum transport in multidot systems [J]. Mod. Phys. Lett. B, 1999, 8:1377-1347
[9] Simon B H. The quantum adiabatic theorem, and Berry's phase [J]. Phys. Rev. Lett., 1983, 51(24): 2167-2170
[10] Dresden M, Yang C N. Phase shift in a rotation neutron or optical interferometer [J]. Phys. Rev. D, 1979, 20: 1846-1848
[11] Gao X C, Fu J, Li X H, et al. Invariant formulation and exact solutions for the relativistic charged Klein-Gordon field in a time-dependent spatially homogeneous electric field [J]. Phys. Rev. A, 1998, 57:753-761
[12] Shen J Q, Zhu H Y, Li J. Exact solutions for the interaction between neutron spin and gravity by using invariant theory [J]. Acta Phys. Sin. (物理学报), 2001, 50(10): 1884-1887 (in Chinese)
[13] Shen J Q, Zhu H Y, Shi S L et al. Gravitomagnetic field and time-dependent spin-rotation coupling [J]. Phys. Scr., 2002, 65(6): 465-468
[14] Shen J Q, Zhu H Y, Mao H. An approach to exact solution of the time-dependent supersymmetric two-level three-photon Jaynes-Cummings model [J]. J. Phys. Soc .Jpn, 2001, 71(6): 1440-1444
[15] Shen J Q, Zhu H Y, Shi S L. Polarization of single-mode photon propagating inside the fiber and its geometric phase factor [J]. Acta Phys. Sin. (物理学报), 2002, 51(3): 536-540 (in Chinese)
[16] Nozières P, Pines D. The Theory of Quantum Liquids [M]. Redwood City: Addison Wesley, 1990. Ⅱ
[17] Li H Z. Global Properties of Simple Physical Systems [M]. Shanghai: Scientific & Technological Press, 1998.
[18] Zhu H Y, Shen J Q. Exact solutions of general time-dependent three-generator systems [J]. Acta Phys. Sin. (物理学报), 2002, 51 (7): 1448-1452 (in Chinese)
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%