本文综述了微脉塞的研究进展,着重介绍了超冷原子注入的微脉塞(MAZER)的基本理论和主要结果.对有关的实验工作也作了简单介绍.
参考文献
[1] | Meschede D,Walther H,Muller G.One-atom maser [J].Phys.Rev.Lett.,1985,54(6):551-554. |
[2] | Walther H.Single atom masers and lasers,in Frontiers of Laser Physics and Quantum Optics [M].ed.Xu Z Z,Xie S W,Zhu S Y,et al.Berlin:Springer,2000.39-69. |
[3] | Raithel G,Wagner C,Walther H,et al.The micromaser:A proving ground for quantum physics,in Cavity Quantum Electrodyn.amics [M].ed.Berman P R.Boston:Academic,1994.57-121. |
[4] | Rempe G,Walther H,Klein N.Observation of quantum collapse and revival in a one-atom maser [J].Phys.Rev.Lett.,1987,58(4):353-356. |
[5] | Rempe G,Schmidt-Kaler F,Walther H.Observation of Sub-Poissonian photon statistics in a micromaser [J].Phys.Rev.Lett.,1990,64(23):2783-2786. |
[6] | Rempe G,Walther H.Sub-Poissonian atom statistics in a micromaser [J].Phys.Rev.A,1990,42(3):1650-1655. |
[7] | Krause J,Scully M O,Walther H.Quantum theory of the micromaser:symmetry breaking via off-diagonal atomic injection [J].Phys.Rev.A,1986,34(3):2032-2037. |
[8] | Filipowicz F,Javanainen J,Meystre P.Theory of a microscopic maser [J].Phys.Rev.A,1986,34(4):3077-3087. |
[9] | Lugiato L A,Scully M O,Walther H.Connection between microscopic and macroscopic maser theory [J].Phys.Rev.A,1987,36(2):740-743. |
[10] | Scully M O,Walther H,Agarwal G S,et al.Micromaser spectrum [J].Phys.Rev.A,1991,44(9):5992-5996. |
[11] | Qamar S,Zubairy M S.Exact calculation of the natural linewidth for an one-photon micromaser [J].Phys.Rev.A,1991,44(11):7804-7808. |
[12] | Lu N.Subnarrow linewidth,hole and split in micromaser spectrum [J].Phys.Rev.Lett.,1993,70(7):912-915. |
[13] | Lu N.Micromaser spectrum:trapped states [J].Phys.Rev.A,1993,47(2):1347-1357 |
[14] | Quang T,Agarwal G S,Bergou J,et al.Calculation of the micromaser spectrum.I.Green's-function approach and approximate analytical techniques [J].Phys.Rev.A,1993,48(1):803-812. |
[15] | Vogel K,Schleich W,Scully M O,et al.Calculation of the micromaser spectrum.II.Eigenvalue approach [J].Phys.Rev.A,1993,48(1):813-817. |
[16] | Meystre P,Rempe G,Walther H.Very-low-temperature behavior of a micromaser [J].Opt.Lett.,1988,13(12):1078-1090. |
[17] | Weidinger M,Varcoe B T H,Heerlein R,et al.Trapping states in the micromaser [J].Phys.Rev.Lett.,1999,82(19):3795-3798. |
[18] | Wagner C,Brecha R J,Schenzle A,et al.Phase diffusion,entangled states,and quanrum measurements in the micromaser [J].Phys.Rev.A,1993,47(6):5068-5079. |
[19] | Schieve W C,McGowan R R.Phase distribution and linewidth in the micromaser [J].Phys.Rev.A,1993,48(3):2315-2323. |
[20] | Benson O,Raithel G,Walther H.Quantum jumps of the micromaser field:dynamics behavior close to phase transition points [J].Phys.Rev.Lett.,1994,72(22):3506-3509. |
[21] | Ralthel G,Benson O,Walther H.Atomic interferometry with the micromaser [J].Phys.Rev.Lett.,1995,75(19):3446-3449. |
[22] | Varcoe B T H,Brattke S,Weidinger M,et al.Preparing pure photon mumber states of the radiation field [J].Nature,2000,403:743-746. |
[23] | Brattke S,Varcoe B T H,Walther H.Generation of photon number states on demand via cavity quantum electrodynamics [J].Phys.Rev.Lett.,2001,86(16):3534-3537. |
[24] | Lougovski P,Solano E,et al.Fresnel representation of the Wigner function:an operational approach [J].Phys.Rev.Lett.,2003,91(1):010401. |
[25] | Bouwmeester D,Ekert A,Zeilinger A.The Physics of Quantum Information [M].Berlin:springer,2000. |
[26] | Chu S.Nobel Lecture:The manipulation of neutral particles [J].Rev.Mod.Phys.,1998,70(3):685-706. |
[27] | Cohen-Tannoudji C N.Nobel lecture:Manipulating atoms with photons [J].Rev.Mod.Phys.,1998,70(3):707-719. |
[28] | Phillips W D.Nobel lecture:Laser cooling and trapping of neutral atoms [J].Rev.Mod.Phys.,1998,70(3):721-741. |
[29] | Cornell E A,Wieman C E.Nobel lecture:Bose-Einstein condensation in a dilute gas,the first 70 years and some recent experiments [J].Rev.Mod.Phys.,2002,74(3):875-893. |
[30] | Ketterle W.Nobel lecture:When atoms behave as waves:Bose-Einstein condensation and the atom laser [J].Rev.Mod.Phys.,2002,74(4):1131-1151. |
[31] | Scully M O,Meyer G M,Walther H.Induced emission due to the quantized motion of ultracold atoms passing through a micromaser cavity [J].Phys.Rev.Lett.,1996,76(22):4144-4147. |
[32] | Meyer G M,Scully M O,Walther H.Quantum theory of the mazer:I.general theory [J].Phys.Rev.A,1997,56(5):4142-4152. |
[33] | Loftier M,Meyer G M,Schroder M,et al.Quantum theory of the mazer:II.extensions and experimental considerations [J].Phys.Rev.A,1997,56(5):4153-4163. |
[34] | Schroder M,Vogel K,Schleich W,et al.Quantum theory of the mazer:spectrum [J].Phys.Rev.A,1997,56(5):4164-4174. |
[35] | Loftier M,Meyer G M,Walther H.Velocity selection for ultracold atoms using a micromaser [J].Europhys.Lett.,1998,41(6):593-597. |
[36] | Retamal J C,Solano E,Zagury N.Ultracold atoms interacting with a sinusoidal mode of a high Q cavity [J].Opt.Cornmun.,1998,154:28-34. |
[37] | Zhang Z M,et al.Quantum theory of the two-photon mazer:emission probability [J].Phys.Rev.A,1999,59(1):808-813. |
[38] | Zhang Z M,et al.Quantum theory of the micromaser with ultra-cold A-type three- level atoms [J].Opt.Commun.,1998,157(1/6):77-82. |
[39] | Zhang Z M,et al.Photon statistics of the micromaser with ultra-cold A-type three-level atoms [J].Acta Phisica Sinica (Overseas Edition),1999,8(8):571-576. |
[40] | Zhang Z M,et al.Spectrum of the micromaser injected with A-type three-level atoms [J].Chinese Physics,2000,9(12):900-904. |
[41] | Zhang Z M,et al.Quantum theory of the micromaser with ultra-cold cascade three-level atoms [J].J.Phys.B:At.Mol.Opt.Phys.,1999,32(16):4013-4028. |
[42] | Zhang Z M,et al.Transmission probability of a ultracold three-level atom through a micromaser cavity [J].Chin.Phys.Lett.,1999,16(8):568-570. |
[43] | Zhang Z M,et al.Quantum theory of the micromaser with ultracold cascade three-level atoms II:spectral properties [J].J.Phys.B:At.Mol.Opt.Phys.,2000,33(11):2125-2133. |
[44] | Zhang Z M,et al.Velocity selection for ultracold three-level atoms using two micromaser cavities [J].Phys.Rev.A,1999,60(4):3321-3323. |
[45] | Agarwal G S,Arun R.Resonant tunneling of ultracold atoms through vacuum induced potential [J].Phys.Rev.Lett.,2000,84(22):5098-5101. |
[46] | Arun R,Agarwal G S,Scully M O,et al.Mazer action in a bimodal cavity [J].Phys.Rev.A,2000,62(2):023809. |
[47] | Zhang Z M,et al.Dynamics of an ultracold cascade three-level atom interacting with a two-mode cavity field [J].J.Opt.B:Quant.and Semiclass.Opt.,2002,4(1):30-36. |
[48] | Arun R,Agarwal G S.Dark states and interference in cascade transitions of ultracold atom in a cavity [J].Phys.Rev.A,2002,66(4):043812. |
[49] | Du S D,Zhou L W,Gong S Q,et al.Quantum inversion of cold atoms in a microcavity [J].J.Phys.B:At.Mol.Opt.Phys.,1999,32:5645-5656. |
[50] | Abdel-Aty M,Obada A S F.Quantum inversion of cold atoms in a microcavity [J].J.Phys.B:At.Mol.Opt.Phys.,2002,35:807-813. |
[51] | Bastin T,Solano E.Collapse-revivals and population trapping in the m-photon mazer [J].quant-ph/0005011. |
[52] | Bastin T,Solano E.Population trapping in the one-photon mazer [J].Opt.Commun.,2003,217:239-247. |
[53] | Wu S D,et al.The atomic emission probability of the micromaser with Kerr medium [J].Acta Physics Sinica (物理学报),2001,50(10):1925-1929 (in Chinese). |
[54] | Wu S D,et al.Photon statistics of the micromaser with a Kerr medium [J].Chin.Phys.,2002,11(12):1272-1275. |
[55] | Wu S D.Spectrum of the micromaser with Kerr medium [J].Commun.Theor.Phys.,2002,38(5):637-640. |
[56] | Harris S E.Electromagnetically induced transparency [J].Physics Today,1997,50(7):36-42. |
[57] | Marangos J P.Electromagnetically induced transparency [J].J.Mod.Opt.,1998,45(3):471-503. |
[58] | Kocharovskaya O.Amplification and lasing without inversion [J].Phys.Rep.,1992,219(3-6):175-190. |
[59] | Mandel P.Lasing without inversion:a useful concept [J].Contemporary Physics,1993,34(5):235-246. |
[60] | Scully M O.From lasers and masers to phaseonium and phasers [J].Phys.Rep.,1992,219(3-6):191-202. |
[61] | Zhang Z M,et al.Atomic coherence in the micromaser injected with slow V-type three-level atoms:emission probability [J].Chin.Phys.Lett.,2001,18(2):223-224. |
[62] | Liang W Q,Chu K Q,Zhang Z M,et al.Micromaser injected with ultracold V-type three-level atoms:effects of atomic coherence on photon statistics [J].Acta Physics Sinica (物理学报),2001,50(12):2345-2355 (in Chinese). |
[63] | Liang W Q,Niu Z Q,et al.V-type three-level-atom mazer with atomic coherence:velocity selection [J].J.Phys.B:At.Mol.Opt.Phys.,2001,34(22):4427-4436. |
[64] | Chu K Q,Liang W Q,et al.Spectrum of the micromaser injected with ultracold V-type three-level atoms [J].Acta Optics Sinica (光学学报),2002,22(5):523-529 (in Chinese). |
[65] | Xiong J,Chu K Q,et al.Transmission probability of an ultracold atom in presence of atomic coherence [J].Chin.Phys.Lett.,2002,19(3):331-333. |
[66] | Xiong J,Zhang Z M.Emission probability and photon statistics of a coherently driven mazer [J].J.Phys.B:At.Mol.Opt.Phys.,2002,35(9):2159-2172. |
[67] | Xiong J,et al.Emission probability of the cascade three-level-atom mazer with injected atomic coherence [J].Chin.Phys.Lett.,2002,19(11):1621-1624. |
[68] | Xiong J,Zhang Z M.Effects of the center-of-mass motion on the population trapping of ultracold atoms [J].Chin.Phys.Lctt.,2003,20(11):1950-1953. |
[69] | Scully M O,Zubairy M S.Quantum Optics [M].New York:Cambridge University Press,1997. |
[70] | Shore B W,Knight P L.The Jeynes-Cummings model [J].J.Mod.Opt.,1993,40(7):1195-1238. |
[71] | Horache S,Brune M,Raimond J M.Trapping atoms by the vacuum field in a cavity [J].Europhys.Lett.,1991,14(1):19-24. |
[72] | Englert B G,Schwinger J,Barut A O,et al.Reflecting slow atoms from a micromaser field [J].Europhys.Lett.,1991,14(1):25-31. |
[73] | Born M,Wolf E.Principles of Optics [M].New York:Macmillian,1959. |
[74] | Wilkens M,Goldstein E,Taylor B,et al.Fabry-Perot interferometer for atom [J].Phys.Rev.A,1993,47(3):2366-2369. |
[75] | Brune M,Schmidt-Kaler F,Maali A,et al.Quantum Rabi oscillation:a direct test of field quantization in a cavity [J].Phys.Rev.Lett.,1996,76(11):1800-1803. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%