欢迎登录材料期刊网

材料期刊网

高级检索

光学微腔中原子之自发辐射与自由空间中原子的自发辐射有着重要的不同.微腔能够控制腔内原子的自发辐射,使自发辐射得到抑制或增强,并有可能使自发辐射成为一个可逆过程.由此发展起来的腔量子电动力学能够阐述腔场与原子的相互作用.本文简要介绍了这一研究领域的背景和进展,同时介绍了微腔的重要应用--无阈值激光器.

参考文献

[1] Purcell E M. Spontaneous emission probabilities at radio frequencies [J]. Phys. Rev, 1946, 69: 681-685.
[2] Haroche S, Raimond J M. Cavity quantum electrodynamics [J]. Scientific American, 1993, 268: 26-33.
[3] Slusher R E, Weisbuch C. Optical microcavities in condensed matter system [J]. Solid State Commum, 1994, 92:149-158.
[4] Yamamoto Y, Slusher R E. Optical processes in microcavities [J]. Physics Today, 1993, 146: 66-73.
[5] Scalora M, Bloemer M J, Pethel A S, et al. Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures [J]. J. Appl. Phys., 1998, 83: 2377-2383.
[6] Fan X D, Lonergan M C, Zhang Y Z, et al. Enhanced spontaneous emission from semiconductor nanocrystals embedded in whispering gallery optical microcavities [J]. Phys. Rev., 2001, B64: 115310.
[7] McCall S L, Levi A F, Slusher R E, et al. Whispering-gallery mode microdisk laser [J]. Appl. Phys. Lett., 1992,160: 289.
[8] Zhang Pei, Wang Ruopeng, Ding Xiaomin, et al The study on InGaAsP single quantum well semiconductor microdisk lasers [J]. J. Infrared Millim. Waves (红外与毫米波学报), 1995, 114:253 (in Chinese).
[9] Deng Kalfa, Shi Dufang, Jiang Meiping, et al. Progress in the study of photonic crystal [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2004, 21(5): 555-564 (in Chinese).
[10] Vuckovic J, Loncar M, et al. Design of photonic crystal microcavities for cavity QED [J]. Phys. Rev., 2001, E65:016608-1-016608-10.
[11] Villeneuve P R, Fan S, Joannopoulos J D. Microcavities in photonic crystals: mode symmetry, tunability and coupling efficiency [J]. Phys. Rev., 1996, B54: 7837-7842.
[12] Fan S, Winn J N, Devenyi A, et al. Guided and defect modes in dielectric waveguides [J]. J. Opt. Soc. Am.,1995, B12: 1267-1270.
[13] Foresi J S, et al. Photonic-band gap microcavities in optical waveguides [J]. Nature, 1997, 390: 143-145.
[14] Steven G J, Fan S, Mekis A, et al. Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap [J]. Appl. Phys. Lett., 2001, 78: 3388-3390.
[15] Meschede D, Walther H, et al. One-atom maser [J]. Phys. Rev. Lett., 1985, 54: 551-554.
[16] Rempe G, Klein N, Walther H. Observation of quantum collapse and revival in an one-atom maser [J]. Phys. Rev.Lett., 1987, 58: 353-356.
[17] Rempe G, Schmidt-Kaler F, Walther H. Observation of sub-Poissonian photon statistics in a micromaser [J].Phys. Rev. Lett., 1990, 64: 2783-2786.
[18] Brune M, Raimond J M, Goy P, et al. Realization of a two-photo maser oscillator [J]. Phys. Rev. Lett., 1989, 59:1899-1902.
[19] Bernardot F, Nussenzveig P, Brune M, et al. Vacuum rabi splitting observed on microscopic atomic sample in a microwave cavity [J]. Europhys Lett., 1992, 17: 33-35.
[20] Orozco L A, Raizen M G, Xiao M, et al. Spueezed state generation in optical bistability [J]. J. Opt. Soc Am.,1987, B7: 1490.
[21] Raizen M G, et al. Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity [J].Phys. Rev. Lett., 1989, 63: 240.
[22] Thompson R J, Rempe G, Kimble H J. Observation of normal-mode splitting for an atom in an optical cavity [J]. Phys. Rev. Lett., 1992, 68: 1132-1135.
[23] Zhang Tiancai, Gao Jiangrui. Progress of cavity-QED in the regime of strong couple: a review [J]. Journal of Shanxi University (Nat. Sci. Ed) (山西大学学报), 2002, 25:180-184 (in Chinese).
[24] Rempe G, Thompson R J, Brecha R, et al. Optical bistability and photon statistics in cavity quantum electrodynamics [J]. Phys. Rev. Lett., 1991, 67: 1727-1730.
[25] Brune M, Schmidt-Kaler, Maali A, et al. Quantum rabi oscillation: a direct test of field quantization in a cavity [J]. Phys. Rev. Lett., 1996, 76: 1800-1803.
[26] Berman O. Advances in Atomic, Molecular and Optical Physics, Supplement 2 [M]. Academic Press, 1994.
[27] Thorne K S. Quantum Measurement [M]. Cambridge University Press, 1992.
[28] Pellizzari T, Gardiner S A, Cirac J I, et al. Decoherence, continuous observation, and quantum computing: a cavity QED model [J]. Pyhs. Rev. Lett., 1995, 75: 3788-3791.
[29] Turchette Q A, Hood C J, Lange W, et al. Measurement of conditional phase shifts for quantum logic [J]. Phys.Rev. Lett., 1995, 75: 4710-4713.
[30] Parkins A S, Marte P, Zoller P, et al. Synthesis of abitrary quantum state via adiabatic transfer of zeeman coherence [J]. Phys. Rev. Lett., 1993, 71: 3095-3098.
[31] Law C K, Kimble H J. Deterministic generation of a bit-stream of single-photo pulses [J]. J. Modern Optics, 1997,44: 2067-2074.
[32] Cirac J I, Zoller P, Kimble H J, et al. Quantum state transfer and entangelement distribution among distant Nodes in a quantum network [J]. Phys. Rev. Lett., 1997, 78: 3221-3224.
[33] Vanenk S J, Cirac J I, Zoller P, et al. Quantum state transfer in a quantum network: a quantum-optical implementation [J]. J. Modern Optics, 1997, 44: 1727-1738.
[34] Wang Jian, Xing Da. Overview of the research on quantum-dot lasers [J] Chinese Journal of Quantum Electronics(量子电子学报), 2003, 20(2): 129-134 (in Chinese).
[35] Wilson-Rae, Imamoglu A. Quantum dot cavity-QED in the presence of strong electron-phonon interactions [J].Phys. Rev., 2002, B65: 235311(R).
[36] Duan L M, Kuzmich A, Kimble H J. Cavity QED and quantum-information processing with "hot" trapped atoms [J]. Phys. Rev., 2003, A67: 032305.
[37] Zou X B, Pahlke K, Mathis W. Generation of two-mode nonclassical states and a quantum-phase-gate operation in tapped-ion cavity QED [J]. Phys. Rev., 2002, A65: 064303.
[38] Di Fidio C, et al. Cavity QED with a trapped ion in a leaky cavity[J]. Phys. Rev., 2002, A65: 033825.
[39] Soklakov A N, et al. Information dynamics in cavity QED [J]. Phys. Rev., 2003, A67: 033804.
[40] Zubairy S M, et al. Cavity-QED-based quantum phase gate [J]. Phys. Rev., 2003, A68: 033820.
[41] Zou X B, Pahlke K, Mathis W. Generation of an entangled state of two three-level atoms in cavity QED [J]. Phys.Rev., 2003, A67: 044301.
[42] Yokoyama H, Brorson S D. Rate equation analysis of microcavity lasers [J]. J. Appl. Phys., 1989, 66: 4801.
[43] Harocke S. Rydberg atoms and radiation in a resonant cavity [M]. in Les Houches, Session XXXV Ⅲ, 1982-New Trends in Atomic Physics. Grynberg G and Stora REds. Elsvier, Amsterdam, 1984. 237.
[44] Wang Enbo, Li Chengfang, Xu Tianming. Analysis and disign of one dimansional Er3+-photon strong coupling microcavity [J]. Laser Journal (激光杂志), 2003, 24:14-16 (in Chinese).
[45] Yokoyama H, Nishi K, Anan T, et al. Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities [J]. Optical and Quantum Electronics, 1992, 24: S245-S272.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%