欢迎登录材料期刊网

材料期刊网

高级检索

由于微结构光纤灵活多变的结构特点,使得以其为增益介质的光纤激光器件,具有比普通光纤激光器件更加优异的性能.本文结合国际上微结构光纤激光器件的最新研究进展情况,概述了微结构光纤作为增益介质的独特特性、微结构光纤激光器件的理论分析方法和掺铒、掺镱以及喇曼微结构光纤激光器件的特点.

参考文献

[1] Birks T A, Knight J C, Russell P, et al. Endlessly single-mode photonic crystal fiber [J]. Opt. Lett., 1997, 22(13):961-963.
[2] Knight J C, Birks T A, Russell P S J, et al. Properties of photonic crystal fiber and the effective index model [J].J. Opt. Soc. Am. A, 1998, 15(3): 748-752.
[3] Knight J C, Arriaga J, Birks T A, et al. Anomalous dispersion in photonic crystal fiber [J]. IEEE Photon.Technol. Lett., 2000, 12(7): 807-809.
[4] Ferrando A, et al. Designing the properties of dispersion-flattened photonic crystal fibers [J]. Opt. Exp., 2001,9(13): 687-697.
[5] Hansen K P. Dispersion flattened hybrid-core nonlinear photonic crystal fiber [J]. Opt. Exp., 2003, 11(13): 1503-1509.
[6] Renversez G, Kuhlmey B, McPhedran R. Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses [J]. Opt. Lett., 2003, 28(12): 989-991.
[7] Ferrando A, Silvestre E, Miret J, et al. Nearly zero ultraflattened dispersion in photonic crystal fibers [J]. Opt.Lett., 2000, 25(11): 790-792.
[8] Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm [J]. Opt. Lett., 2000, 25(1): 25-27.
[9] Husakou A V, et al. Supercontinum generation of higher-order solitons by fission in photonic crystal fibers [J].Phys. Rev. Lett., 2001, 87(20): 203901.
[10] Gaeta A L. Nonlinear propagation and continuum generation in microstructured optical fibers [J]. Opt. Lett.,2002, 27: 924-926.
[11] Kerbage C, Eggleton B J. Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber [J]. 0 Opt. Exp., 2002, 10(5): 246-255.
[12] Ju J, Jin W, Demokan M S. Properties of a highly birefringent photonic crystal fiber [J]. IEEE Photon. Technol.Lett., 2003, 15(10): 1375-1377.
[13] Limpert J, Schreiber T, Nolte S, et al. All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber [J]. Opt. Exp., 2003, 11(24): 3332-3337.
[14] Benabid F, Knight J C, Antonopoulos G, et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber [J]. Science, 2002, 298(5592): 399-402.
[15] Wadsworth W J, Knight J C, Reeves W H, et al. Yb3+ -doped photonic crystal fibre laser [J]. Electron. Lett.,2000, 36(17): 1452-1453.
[16] Thomas N. Photonic crystal distributed feedback fiber lasers with Bragg Gratings [J]. J. Lightwave. Technol.,2000, 18(4): 589-597.
[17] Furusawa K, Monro T M, Petropoulos P, et al. Modelocked laser based on ytterbium doped holey fibre [J].Electron. Lett., 2001, 37(9): 560-561.
[18] Furusawa K, Malinowski A, Price J H V, et al. Cladding pumped ytterbium-doped fiber laser with holey inner and outer cladding [J]. Opt. Exp., 2001, 9(13): 714-720.
[19] Glas P, Fischer D. Cladding pumped large-mode-area Nd-doped holey fiber laser [J]. Opt. Exp., 2002, 10(6):286-290.
[20] Wadsworth W J, Percival R M, Bouwmans G, et al. High power air-clad photonic crystal fibre laser [J]. Opt.Exp., 2003, 11(1): 48-53.
[21] Cucinotta A, Poli F, Selleri S, et al. Amplification properties of Er3+-doped photonic crystal fibers [J]. J.Lightwave. Technol., 2003, 21(3): 782-788.
[22] Hilaire S, Roy P, Pagnoux D, et al. Large mode Er3+-doped photonic crystal fiber amplifier for highly efficient amplification [J]. ECOC, 2003, WE4P13~1.
[23] Limpert J, Schreiber T, Nolte S, et al. High-power air-clad large-mode-area photonic crystal fiber laser [J]. Opt.Exp., 2003, 11(7): 818-823.
[24] Hougaard K G, Broeng J, Bjarklev A. Low pump power photonic crystal fibre amplifiers [J]. Electron. Lett., 2003,39(7): 599-600.
[25] Nilsson J, Selvas R, Belardi W, et al. Continuous-wave pumped hoely fiber Raman laser [C]// in Proc. OFC2002, Anaheim, CA, Mar. 19-21, 2002, Paper WR6: 315-317.
[26] Yusoff Z, et al. Raman effects in a highly nonlinear holey fiber: amplification and modulation [J]. Opt. Lett.,2002, 27(6): 424-426.
[27] Limpert J, Schreiber T, Liem A, et al. Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation [J]. Opt. Exp., 2003, 11(22): 2982-2990.
[28] Liu Y G, et al. A novel bi-wavelength method for accurately measuring gain and noise characteristics of an erbium-doped fibre amplifier for multi-channel wavelength division multiplexing transmission [J]. Chin. Phys.Lett., 2003, 20(10): 1777-1780.
[29] Feng X H, Liu Y G, Fu S G, et al. Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating [J]. IEEE Photon. Technol. Lett., 2004, 16(3): 762-764.
[30] Mortensen N A, Folkenberg J R, Nielsen M D, et al. Modal cutoff and the V parameter in photonic crystal fibers[J]. Opt. Lett., 2003, 28(20): 1879-1881.
[31] Nielsen M D, Mortensen N A, Folkenberg J R, et al. Mode-field radius of photonic crystal fibers expressed by the V parameter [J]. Opt. Lett., 2003, 28(23): 2309-2311.
[32] Finazzi V, Monro T M, Richardson D J. High nonlinearity extruded single-mode holey optical fibers [C]//in Proc.OFC, 2002, 524-525.
[33] Agrawal G P. Nonlinear Fiber Optics [M]. 3rd Ed., San Diego: Academic Press, 2001.
[34] Okuno T, Onishi M, Kashiwada T, et al. Silica-based functional fibers with enhanced nonlinearity and their applications [J]. IEEE J. Sel. Top. Quant., 1999, 5: 1385-1391.
[35] www.blazephotonics.com
[36] Petropoulos P, Monro T M, Berlardi W, et al. 2R-regenerative all-optical switch based on a highly nonlinear holey fiber [J]. Opt. Lett., 2001, 26(16): 1233-1235.
[37] Pask H M, et al. Operation of cladding-pumped Yb3+-doped silica fibre lasers in 1 um region [J]. Electon. Lett.,1994, 30(11): 863-865.
[38] Dominic V, MacCormack S, et al. 110 W fiber laser [J]. Electon. Lett., 1999, 35(14): 1158-1160.
[39] Xiang Y, Ning D, Xu Z W, et al. CW 1.8w Yb3+-double clad fiber laser with all components made in China [J].Journal of Optoelectronics · Laser (光电子·激光), 2003, 14(10): 1018-1020 (in chinese).
[40] Offerhaus H L, Alvarez-Chavez G A, Nilsson J, et al. Multi-watt Q-switched fiber laser [J]. CLEO'99 Baltimore,1999, 23-28.
[41] Chen Z J, Grudinin A B, Porta J, et al. Enhanced Q-switching in double-clad fiber lasers [J]. Opt. Lett., 1998,23(6): 454-456.
[42] Johnson S G, Joannopoulos J D. Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis [J]. Opt. Exp., 2001, 8(3): 173-190.
[43] Monro T M, Richardson D J, Broderick N G R, et al. Holey optical fibers: An efficient modal model [J]. J.Lightwave. Technol., 1999, 17(6): 1093-1102.
[44] Knudsen E, Bjarklev A. Modelling photonic crystal fibres with Hermite-Gaussian functions [J]. Opt. Commun.,2003, 222(1-6): 155-160.
[45] White T P, Kuhlmey B T, McPhedran R C, et al. Multipole method for microstructured optical fibers [J]. J.Opt. Soc. Am. B, 2003, 20(7): 1581-1581.
[46] Kuhlmey B T, White T P, Renversez G, et al. Multipole method for microstructured optical fibers Ⅱ. Implementation and results [J]. J. Opt. Soc. Am. B, 2002, 19(10): 2331-2340.
[47] White T P, Kuhlmey B T, McPhedran R C, et al. Multipole method for micrwstructured optical fibers. I.Formulation [J]. J. Opt. Soc. Am. B, 2002, 19(10): 2322-2330.
[48] Zhu Z M, Brown T G. Multipole analysis of hole-assisted optical fibers [J]. Opt. Commun., 2002, 206(4-6):333-339.
[49] Wang Z, Ren G B, Lou S Q, et al. Supercell lattice method for photonic crystal fibers [J]. Opt. Exp., 2003, 11(9):980-991.
[50] Zhu Z M, Brown T G. Full-vectorial finite-difference analysis of microstructured optical fibers [J]. Opt. Exp.,2002, 10(17): 853-864.
[51] Fujisawa T, Koshiba M. Finite element characterization of chromatic dispersion in nonlinear holey fibers [J]. Opt.Exp., 2003, 11(13): 1481-1489.
[52] Cucinotta A, Selleri S, Vincetti L, et al. Perturbation analysis of dispersion properties in photonic crystal fibers through the finite element method [J]. J. Lightwave. Technol., 2002, 20(8): 1433-1442.
[53] He Y Z, Shi F G. Finite-difference imaginary-distance beam propagation method for modeling of the fundamental mode of photonic crystal fibers [J]. Opt. Commun., 2003, 225(1-3): 151-156.
[54] Saitoh K, Koshiba M. Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers [J]. IEEE J. Quant. Electron., 2002, 38(7): 927-933.
[55] Fogli F, Saccomandi L, Bassi P, et al. Full vectorial BPM modeling of inde-guiding photonic crystal fibers and couplers [J]. Opt. Exp., 2002, 10(1): 54-59.
[56] Emori Y, Tanaka K, Namiki S. 100 nm bandwidth flat-gain Raman amplifiers pumped and gain-equalised by12-wavelength-channel WDM laser diode unit [J]. Electron. Lett., 1999, 35(16): 1355-1356.
[57] Fuochi M, et al. Study of Raman amplification properties in triangular photonic crystal fibers [J]. J. Lightwave.Technol., 2003, 21(10): 2247-2254.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%