由于微结构光纤灵活多变的结构特点,使得以其为增益介质的光纤激光器件,具有比普通光纤激光器件更加优异的性能.本文结合国际上微结构光纤激光器件的最新研究进展情况,概述了微结构光纤作为增益介质的独特特性、微结构光纤激光器件的理论分析方法和掺铒、掺镱以及喇曼微结构光纤激光器件的特点.
参考文献
[1] | Birks T A, Knight J C, Russell P, et al. Endlessly single-mode photonic crystal fiber [J]. Opt. Lett., 1997, 22(13):961-963. |
[2] | Knight J C, Birks T A, Russell P S J, et al. Properties of photonic crystal fiber and the effective index model [J].J. Opt. Soc. Am. A, 1998, 15(3): 748-752. |
[3] | Knight J C, Arriaga J, Birks T A, et al. Anomalous dispersion in photonic crystal fiber [J]. IEEE Photon.Technol. Lett., 2000, 12(7): 807-809. |
[4] | Ferrando A, et al. Designing the properties of dispersion-flattened photonic crystal fibers [J]. Opt. Exp., 2001,9(13): 687-697. |
[5] | Hansen K P. Dispersion flattened hybrid-core nonlinear photonic crystal fiber [J]. Opt. Exp., 2003, 11(13): 1503-1509. |
[6] | Renversez G, Kuhlmey B, McPhedran R. Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses [J]. Opt. Lett., 2003, 28(12): 989-991. |
[7] | Ferrando A, Silvestre E, Miret J, et al. Nearly zero ultraflattened dispersion in photonic crystal fibers [J]. Opt.Lett., 2000, 25(11): 790-792. |
[8] | Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm [J]. Opt. Lett., 2000, 25(1): 25-27. |
[9] | Husakou A V, et al. Supercontinum generation of higher-order solitons by fission in photonic crystal fibers [J].Phys. Rev. Lett., 2001, 87(20): 203901. |
[10] | Gaeta A L. Nonlinear propagation and continuum generation in microstructured optical fibers [J]. Opt. Lett.,2002, 27: 924-926. |
[11] | Kerbage C, Eggleton B J. Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber [J]. 0 Opt. Exp., 2002, 10(5): 246-255. |
[12] | Ju J, Jin W, Demokan M S. Properties of a highly birefringent photonic crystal fiber [J]. IEEE Photon. Technol.Lett., 2003, 15(10): 1375-1377. |
[13] | Limpert J, Schreiber T, Nolte S, et al. All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber [J]. Opt. Exp., 2003, 11(24): 3332-3337. |
[14] | Benabid F, Knight J C, Antonopoulos G, et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber [J]. Science, 2002, 298(5592): 399-402. |
[15] | Wadsworth W J, Knight J C, Reeves W H, et al. Yb3+ -doped photonic crystal fibre laser [J]. Electron. Lett.,2000, 36(17): 1452-1453. |
[16] | Thomas N. Photonic crystal distributed feedback fiber lasers with Bragg Gratings [J]. J. Lightwave. Technol.,2000, 18(4): 589-597. |
[17] | Furusawa K, Monro T M, Petropoulos P, et al. Modelocked laser based on ytterbium doped holey fibre [J].Electron. Lett., 2001, 37(9): 560-561. |
[18] | Furusawa K, Malinowski A, Price J H V, et al. Cladding pumped ytterbium-doped fiber laser with holey inner and outer cladding [J]. Opt. Exp., 2001, 9(13): 714-720. |
[19] | Glas P, Fischer D. Cladding pumped large-mode-area Nd-doped holey fiber laser [J]. Opt. Exp., 2002, 10(6):286-290. |
[20] | Wadsworth W J, Percival R M, Bouwmans G, et al. High power air-clad photonic crystal fibre laser [J]. Opt.Exp., 2003, 11(1): 48-53. |
[21] | Cucinotta A, Poli F, Selleri S, et al. Amplification properties of Er3+-doped photonic crystal fibers [J]. J.Lightwave. Technol., 2003, 21(3): 782-788. |
[22] | Hilaire S, Roy P, Pagnoux D, et al. Large mode Er3+-doped photonic crystal fiber amplifier for highly efficient amplification [J]. ECOC, 2003, WE4P13~1. |
[23] | Limpert J, Schreiber T, Nolte S, et al. High-power air-clad large-mode-area photonic crystal fiber laser [J]. Opt.Exp., 2003, 11(7): 818-823. |
[24] | Hougaard K G, Broeng J, Bjarklev A. Low pump power photonic crystal fibre amplifiers [J]. Electron. Lett., 2003,39(7): 599-600. |
[25] | Nilsson J, Selvas R, Belardi W, et al. Continuous-wave pumped hoely fiber Raman laser [C]// in Proc. OFC2002, Anaheim, CA, Mar. 19-21, 2002, Paper WR6: 315-317. |
[26] | Yusoff Z, et al. Raman effects in a highly nonlinear holey fiber: amplification and modulation [J]. Opt. Lett.,2002, 27(6): 424-426. |
[27] | Limpert J, Schreiber T, Liem A, et al. Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation [J]. Opt. Exp., 2003, 11(22): 2982-2990. |
[28] | Liu Y G, et al. A novel bi-wavelength method for accurately measuring gain and noise characteristics of an erbium-doped fibre amplifier for multi-channel wavelength division multiplexing transmission [J]. Chin. Phys.Lett., 2003, 20(10): 1777-1780. |
[29] | Feng X H, Liu Y G, Fu S G, et al. Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating [J]. IEEE Photon. Technol. Lett., 2004, 16(3): 762-764. |
[30] | Mortensen N A, Folkenberg J R, Nielsen M D, et al. Modal cutoff and the V parameter in photonic crystal fibers[J]. Opt. Lett., 2003, 28(20): 1879-1881. |
[31] | Nielsen M D, Mortensen N A, Folkenberg J R, et al. Mode-field radius of photonic crystal fibers expressed by the V parameter [J]. Opt. Lett., 2003, 28(23): 2309-2311. |
[32] | Finazzi V, Monro T M, Richardson D J. High nonlinearity extruded single-mode holey optical fibers [C]//in Proc.OFC, 2002, 524-525. |
[33] | Agrawal G P. Nonlinear Fiber Optics [M]. 3rd Ed., San Diego: Academic Press, 2001. |
[34] | Okuno T, Onishi M, Kashiwada T, et al. Silica-based functional fibers with enhanced nonlinearity and their applications [J]. IEEE J. Sel. Top. Quant., 1999, 5: 1385-1391. |
[35] | www.blazephotonics.com |
[36] | Petropoulos P, Monro T M, Berlardi W, et al. 2R-regenerative all-optical switch based on a highly nonlinear holey fiber [J]. Opt. Lett., 2001, 26(16): 1233-1235. |
[37] | Pask H M, et al. Operation of cladding-pumped Yb3+-doped silica fibre lasers in 1 um region [J]. Electon. Lett.,1994, 30(11): 863-865. |
[38] | Dominic V, MacCormack S, et al. 110 W fiber laser [J]. Electon. Lett., 1999, 35(14): 1158-1160. |
[39] | Xiang Y, Ning D, Xu Z W, et al. CW 1.8w Yb3+-double clad fiber laser with all components made in China [J].Journal of Optoelectronics · Laser (光电子·激光), 2003, 14(10): 1018-1020 (in chinese). |
[40] | Offerhaus H L, Alvarez-Chavez G A, Nilsson J, et al. Multi-watt Q-switched fiber laser [J]. CLEO'99 Baltimore,1999, 23-28. |
[41] | Chen Z J, Grudinin A B, Porta J, et al. Enhanced Q-switching in double-clad fiber lasers [J]. Opt. Lett., 1998,23(6): 454-456. |
[42] | Johnson S G, Joannopoulos J D. Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis [J]. Opt. Exp., 2001, 8(3): 173-190. |
[43] | Monro T M, Richardson D J, Broderick N G R, et al. Holey optical fibers: An efficient modal model [J]. J.Lightwave. Technol., 1999, 17(6): 1093-1102. |
[44] | Knudsen E, Bjarklev A. Modelling photonic crystal fibres with Hermite-Gaussian functions [J]. Opt. Commun.,2003, 222(1-6): 155-160. |
[45] | White T P, Kuhlmey B T, McPhedran R C, et al. Multipole method for microstructured optical fibers [J]. J.Opt. Soc. Am. B, 2003, 20(7): 1581-1581. |
[46] | Kuhlmey B T, White T P, Renversez G, et al. Multipole method for microstructured optical fibers Ⅱ. Implementation and results [J]. J. Opt. Soc. Am. B, 2002, 19(10): 2331-2340. |
[47] | White T P, Kuhlmey B T, McPhedran R C, et al. Multipole method for micrwstructured optical fibers. I.Formulation [J]. J. Opt. Soc. Am. B, 2002, 19(10): 2322-2330. |
[48] | Zhu Z M, Brown T G. Multipole analysis of hole-assisted optical fibers [J]. Opt. Commun., 2002, 206(4-6):333-339. |
[49] | Wang Z, Ren G B, Lou S Q, et al. Supercell lattice method for photonic crystal fibers [J]. Opt. Exp., 2003, 11(9):980-991. |
[50] | Zhu Z M, Brown T G. Full-vectorial finite-difference analysis of microstructured optical fibers [J]. Opt. Exp.,2002, 10(17): 853-864. |
[51] | Fujisawa T, Koshiba M. Finite element characterization of chromatic dispersion in nonlinear holey fibers [J]. Opt.Exp., 2003, 11(13): 1481-1489. |
[52] | Cucinotta A, Selleri S, Vincetti L, et al. Perturbation analysis of dispersion properties in photonic crystal fibers through the finite element method [J]. J. Lightwave. Technol., 2002, 20(8): 1433-1442. |
[53] | He Y Z, Shi F G. Finite-difference imaginary-distance beam propagation method for modeling of the fundamental mode of photonic crystal fibers [J]. Opt. Commun., 2003, 225(1-3): 151-156. |
[54] | Saitoh K, Koshiba M. Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers [J]. IEEE J. Quant. Electron., 2002, 38(7): 927-933. |
[55] | Fogli F, Saccomandi L, Bassi P, et al. Full vectorial BPM modeling of inde-guiding photonic crystal fibers and couplers [J]. Opt. Exp., 2002, 10(1): 54-59. |
[56] | Emori Y, Tanaka K, Namiki S. 100 nm bandwidth flat-gain Raman amplifiers pumped and gain-equalised by12-wavelength-channel WDM laser diode unit [J]. Electron. Lett., 1999, 35(16): 1355-1356. |
[57] | Fuochi M, et al. Study of Raman amplification properties in triangular photonic crystal fibers [J]. J. Lightwave.Technol., 2003, 21(10): 2247-2254. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%