欢迎登录材料期刊网

材料期刊网

高级检索

基于功率密度的二阶矩方法,对非傍轴截断双曲余弦高斯(ChG)光束的束宽、远场发散角和M2因子进行了研究.数值计算结果表明,非傍轴截断ChG光束的M2因子不仅与截断参数δ、偏心参数α有关,而且与初始束腰宽度和波长之比w0/λ有关.在δ足够小时,M2因子可小于1.当δ→ 0时,远场发散角趋于渐近值63.435°.对于α=0(Ω0=0)和δ→∞的特例,我们的结果分别退化为非傍轴截断高斯光束和非傍轴无截断ChG光束的M2因子.

参考文献

[1] Nemoto S. Nonparaxial Gaussian beams [J]. Appl. Opt., 1990, 29(13): 1940-1946.
[2] Laabs H. Propagation of Hermite-Gaussian-beams beyond the paraxial approximation [J]. Opt. Commun., 1998,147(1/3): 1-4.
[3] Lü Baida, Ji Xiaoling. Recent advances in laser optics [J]. Chinese Journal of Quantum Electronics (量子电子学报),2004, 21(2): 134-138 (in Chinese).
[4] Porras M A. Finiteness and propagation law of the power density second-order moment for diffracted scalar light beam [J]. Optik, 1999, 110(9): 417-420.
[5] Casperson L W, Hall D G, Tovar A A. Sinusoidal-Gaussian beams in complex optical systems [J]. J. Opt. Soc.Am. A, 1997, 14(12): 3341-3348.
[6] Lü B D, et al. Propagation properties of cosh-Gaussian beams [J]. Opt. Commun., 1999, 164(6): 165-170.
[7] Mandel L, Wolf E. Optical Cohrence and Quantum Optics [M]. New York: Cambridge U. Press, 1995. 113.
[8] Cao Q, Deng X M. Power carried by scalar light beams [J]. Opt. Commun., 1998, 151(6): 212-216.
[9] Lü B D, Luo S R. Beam propagation factor of hard-edge diffracted cosh-Gaussian beams [J]. Opt. Commun.,2000, 178(5): 275-281.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%