基于功率密度的二阶矩方法,对非傍轴截断双曲余弦高斯(ChG)光束的束宽、远场发散角和M2因子进行了研究.数值计算结果表明,非傍轴截断ChG光束的M2因子不仅与截断参数δ、偏心参数α有关,而且与初始束腰宽度和波长之比w0/λ有关.在δ足够小时,M2因子可小于1.当δ→ 0时,远场发散角趋于渐近值63.435°.对于α=0(Ω0=0)和δ→∞的特例,我们的结果分别退化为非傍轴截断高斯光束和非傍轴无截断ChG光束的M2因子.
参考文献
[1] | Nemoto S. Nonparaxial Gaussian beams [J]. Appl. Opt., 1990, 29(13): 1940-1946. |
[2] | Laabs H. Propagation of Hermite-Gaussian-beams beyond the paraxial approximation [J]. Opt. Commun., 1998,147(1/3): 1-4. |
[3] | Lü Baida, Ji Xiaoling. Recent advances in laser optics [J]. Chinese Journal of Quantum Electronics (量子电子学报),2004, 21(2): 134-138 (in Chinese). |
[4] | Porras M A. Finiteness and propagation law of the power density second-order moment for diffracted scalar light beam [J]. Optik, 1999, 110(9): 417-420. |
[5] | Casperson L W, Hall D G, Tovar A A. Sinusoidal-Gaussian beams in complex optical systems [J]. J. Opt. Soc.Am. A, 1997, 14(12): 3341-3348. |
[6] | Lü B D, et al. Propagation properties of cosh-Gaussian beams [J]. Opt. Commun., 1999, 164(6): 165-170. |
[7] | Mandel L, Wolf E. Optical Cohrence and Quantum Optics [M]. New York: Cambridge U. Press, 1995. 113. |
[8] | Cao Q, Deng X M. Power carried by scalar light beams [J]. Opt. Commun., 1998, 151(6): 212-216. |
[9] | Lü B D, Luo S R. Beam propagation factor of hard-edge diffracted cosh-Gaussian beams [J]. Opt. Commun.,2000, 178(5): 275-281. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%