欢迎登录材料期刊网

材料期刊网

高级检索

在界定了双线性系统、矩阵系统和右不变系统后,归纳出已有的3种不同系统的可控性定理,重点放在对右不变系统的可控性定理的总结以及与双线性系统可控性之间的关系上,特别强调了它们的可控性定理主要是根据李群、李代数的特性来判断的,以类似方法详细分析各种不同情况下的量子系统的可控性定理,通过对比,指出现有的有关量子系统可控性定理与双线性系统可控性定理之间的对应关系,由此揭示每一种量子系统可控性定理的适用情况以及各种不同量子系统可控性概念之间的相互关系.

参考文献

[1] Cong Shuang,Zheng Yisong,Ji Beichen,et al.Survey of progress in quantum control system [J].Chinese Journal of Quantum Electronics (量子电子学报),2003,20(1):1-9 (in Chinese).
[2] Cong Shuang.Establishment of state space model in quantum system control [J].Control and Decision (控制与决策),2004,19(10):1105-1108 (in Chinese).
[3] Elliott D L.Bilinear Systems [M].Bilinear Systems in the Encyclopedia of Electrical,1998.
[4] Brockett R W.System theory on group manifolds and coset spaces [J].Siam J.Control,1972,10(2):265-284.
[5] Chen Daizhang.Nonlinear System Geometry Theory (非线性系统的几何理论) [M].Beijing:Science Press,1987.(in Chinese).
[6] Jurdjevic V,Sussmann H J.Control systems on lie groups [J].J.Diff.Equations,1972,12:313-329.
[7] Khapalov A Y,Mohler R R.Reachable sets and controllability of bilinear time-invariant systems:a qualitative approach [C] // IEEE Transactions on Automatic Control,1996,41(9):1342-1346.
[8] Sachkov Y L.Controllability of invariant systems on Lie groups and homogeneous space [DK].At Trimester on Dynamical and Control Systems,SISSA-ICTP,Trieste,Fall 2003.
[9] Sachkov Y L.Controllability of affine right-invariant syatems on solvable lie groups [J].Discrete Mathematics and Theoretical Computer Science,1997,1:239-246.
[10] Gauthier J P,BORARD E G.Controllability des systems bilineares [J].Siam J.Control And Optimization,1982,20(3):377-384.
[11] Sachkov Y L.Controllability of right-invariant syatems on solvable lie groups [J].J.Dynamical and Control Systems,1997,3(4):531-564.
[12] Hilgert J,Hofmann K H,Lawson J.Controllability of systems on a nilpotent Lie group [J].Beitrage Zur Algebra and Geimetrie,1985,20:185-190.
[13] Jurdjevic V,Kupka I.Control systems on semi-simple Lie groups and their homogeneous spaces [J].Ann.Inst.Fourier,Grenoble,1981,31(4):151-179.
[14] Assoudi R E,Gouthier J P.Controllability of right invariant systems on semi-simple Lie groups [J].New Trends in Nonlinear Control Theory Springer-Verlag,1989,122:54-64.
[15] Lawson J.Maximal subsemigroups of Lie groups that are total [J].Proc Edinburgh Math.Soc.,1985,30:479-501.
[16] Gauthier J P,Kupka I,Sallet G.Controllability of right invariant systems on real simple Lie groups [J].Syst.Control Lett.,1984,5:187-190.
[17] Leite F S,Crouch P C.Controllability on class Lie groups [J].Math.Control Signals Syst.,1988,1:31-42.
[18] Assoudi R E,Gouthier J P.Controllability of right invariant systems on real simple Lie groups of type F4,G2,Cn and Bn [J].Math.Control Signals Sys.,1988,1:293-301.
[19] Boothby W M.Some comments on positive orthant controllability of bilineax systems [J].Siam J.Control and Optimization,1982,20(5):634-644.
[20] Sussmann H J,Jurdjevic V.Controllability of nonlinear systems [J].J.Diff.Equations,1972,12:95-116.
[21] Boothby W M,Wilson E N.Determination of the transitivity of bilineax systems [J].Siam J.Control,1979,27(2):213-221.
[22] Koditschek D E,Narendra K S.The controllability of planar systems [C] // IEEE Transaction on Automatic Control,1985,AC-30(1):87-89.
[23] Jurdjevic V,Quinn J P.Controllablity and stability [J].J.Diff.Equations,1978,28:381-389.
[24] Albertini F,Alessandro D D.Notions of controllability for bilineax multilevel quantum systems [C] // IEEE Transations on Automatic Control,2003,48(8):1399-1403.
[25] Huang G M,Tarn T J,Clark J W.On the controllability of quantum-mechanical systems [J].J.Math.Phys.,1983,24:2608-2618.
[26] Tarn T J,Clark J W,et al.Controllability of quantum mechanical systems with continuous spectra [C] // IEEE International Conference on Decision and Control,2000,943-948.
[27] Turinici G,Rabitz H.Quantum wavefunction controllability [J].Chem.Phys.,2001,267:1-16.
[28] Turinici G.Controllable quantities for bilinear quantum systems [C]//IEEE Conference on Decision and Control,2000,(12):1365-1369.
[29] Claudio A.Controllability of quantum mechanical systems by root space decomposition of su(n) [J].Journal of Mathematical Physics,2002,43(5):2051-2062.
[30] Girardeau M D,Schimer S G,Vleahy J,et al.Kinematical bounds on optimization of observables for quantum systems [J].Phys.Rev.A,1998,58(4):2684-2689.
[31] Schirmer S G,Fu H,Solomon A I.Complete controllability of quantum systems [J].Phys.Rev.A,2001,63:063410.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%