在光纤傅里叶变换光谱仪(FFTS)中由于抽样误差和光纤色散等原因引起相位误差导致谱线畸变.乘积法在频域实现相位误差校正,通过短双边干涉图和单边干涉图分别计算出低分辨率和高分辨率的相位谱及幅度谱,并用两个相位谱差的余弦乘以高分辨率的幅度谱得到相位误差校正的谱.讨论了两种截断函数情况下用乘积法计算得到相位误差校正后的光谱.相位校正后的谱和标准谱线比较,二者基本重合.在光纤色散存在的条件下,乘积法仍然有效地消除了谱图中相位误差,证明了FFTS中乘积法校正相位误差的有效性.该方法比双边干涉图法具有较高的光谱分辨率,光谱的基线并不会因噪声而升高,且比卷积法计算简单、速度快、实时性好,可广泛应用到FFTS中.
参考文献
[1] | Kersey A D,Dandridge A,Tveten A B,et al.Single-mode fiber Fourier transform spectrometer[J].Electron.Lett.,1985,21(11):463-464. |
[2] | Flavin D A,McBride R,Jones J D C,et al.Combined temperature and strain measurement with a dispersive optical fiber Fourier transform spectrometer[J].Opt.Lett.,1994,19(24):2167. |
[3] | Zhao Peiqian,Mariotti J M,Léna P,et al.Performance analysis of an infrared single-mode all-fiber-optical Fourier transform spectrometer[J].Appl.Opt.,1995,34(21):4200. |
[4] | Liu Yong,Li Baosheng,Liu Yan,et al.Optical fiber Fourier transform spectrometer[J].Spectroscopy and Spectral Analysis (光谱学与光谱分析),(accepted) (in Chinese). |
[5] | Bell R J.Introductory Fourier Transform Spectroscopy[M].New York:Academic Press,1972.Ch.3,12,17,55,57. |
[6] | Mertz L.Auxiliary computation for Fourier spectrometry[J].Infrared Phys.,1967,7(1):17. |
[7] | Mertz L.Transformations in Optics[M].New York:John Wiley & Sons,Inc,1965.21-43. |
[8] | Michaelian K H.Interferogram symmetrization and multiplicative phase correction of rapid-scan and step-scan photoacoustic FT-IR data[J].Infrared Phys.,1989,29(1):81. |
[9] | Li Baosheng,Liu Yong,Wang An.Processing of Interferogram symmetrization in optical fiber Fourier spectrometer[J].Spectroscopy and Spectral Analysis (光谱学与光谱分析),(accepted) (in Chinese). |
[10] | Li Zhigang,Wang Shurong,Li Futian.Data processing for interferogram of ultraviolet Fourier transform spectrometer[J].Spectroscopy and Spectral Analysis (光谱学与光谱分析),2000,20(2):203 (in Chinese). |
[11] | Vanasse G A.Spectrometric Techniques[M].Volume 1,New York:Academic Press,1977.19. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%