为消除小波分解过程中的边界效应,给出了一种基于多项式拟合的边界延拓的新方式.该延拓方式首先对信号边界处的N个点进行M阶正交多项式拟合,将信号在边界处的低频变化规律用正交多项式表示出来,再利用得到的边界处的低频变化规律对信号进行延拓,从而减少了边界处引入的突变量.研究表明,N取30~50、M取2~4较为合适.进一步的实验表明,利用小波变换在该延拓方式下对信号进行基线校正时,边界效应得到了明显的改善.
参考文献
[1] | Mallat S.A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Trans PAMI,1989,11(7):674-693. |
[2] | Wang K Q,Xu L S,WANG L,et al.Pulse baseline wander removal using wavelet approximation[J].IEEE Computer in Cardiology,2003,30:605-608. |
[3] | Donoho D L,Johnstone I M.Ideal spatial adaptation via wavelet shrinkage[J].Biometrika,1994,81:425-455. |
[4] | Catherine Perrin,Beata Walczak,Desire Luc Massart.The use of wavelets for signal denoising in capillary electrophoresis[J].Anal.Chem.,2001,73(20):4903-4917. |
[5] | Donoho D L,Johnstone I M.Wavelet shrinkage:asymptopia[J].Journal of Royal Statistics Society Series (B),1995,57:301-369. |
[6] | Shao Xuegnang,Alexander Kaiman Leung,Foo-Tim Chan.Wavelet:a new trend in chemistry Acc[J].Chem.Res.,2003,36:276-283. |
[7] | Xiong Wei,Fang Yonghua,et al.Wavenumber correction in the information processing for FTIR[J].Chinese Journal of Quantum Electronics(量子电子学报),2005,22(2):165-168(in Chinese). |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%