提出了一个概率远程制备三维两粒子赤道纠缠态的方案.在该方案中,用两个非最大三维两粒子纠缠态作为量子信道,通过三维两粒子的投影测量、引入辅助的三维单粒子并运用相应的幺正变换可实现量子态的几率远程制备.
参考文献
[1] | Einstein A,et al.Can quantum-mechanical description of physical reality be considered complete?[J].Phys.Rev.,1935,47:777-780. |
[2] | Schrodinger E.Die gegenwartige situation in der quantum-mechanik[J].Naturwissenschaften,1935,23:807-812. |
[3] | Bennett C H,Brassard G,Crepeau C,et al.Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J].Phys.Rev.Left.,1993,70(13):1895-1899. |
[4] | Buzek V,Hillery M.Quantum copying:beyond the no-cloning theorem[J].Phys.Rev.,1996,A54(3):1844-1852. |
[5] | Bennett C H,et al.Communication via one and two-particle operators on Einstein-Podolsky-Rosen states[J].Phys.Rev.Lett,1992,69(20):2881-2884. |
[6] | Ekert A K.Quantum cryptography based on Bell's theorem[J].Phys.Rev.Left.,1991,67(6):661-663. |
[7] | Yan F L,Bai Y K.Probabilistic teleportation of one-particle state of S-level[J].Commun.Theor.Phys.,2003,40(3):273-278. |
[8] | Dai H Y,Zhang M,Li C Z.Probabilistic teleportation of an unknown entangled state of two three-level particles using a partially entangled state of three three-level particles[J].Phys.Lett.A,2004,323(5-6):360-364. |
[9] | Zhan Y B.Scheme for probabilistic teleportation of an unknown three-particle three-level entangled state[J].Commun.Theor.Phys.,2006,45(2):275-278. |
[10] | Li W L,Li C F,Guo G C.Probabilistic teleportation and entanglement matching[J].Phys.Rev.A,2000,61(3):034301. |
[11] | Fang J,Lin Y,Zhu S,et al.Probabilistic teleportation of a three-particle state via three pairs of entangled particles[J].Phys.Rev.A,2003,67(1):014305. |
[12] | Zhan Y B,Fu H.Probabilistic teleportation of a four-particle entangled W state[J].Commun.Theor.Phys.,2005,43(3):440-444. |
[13] | Chen L B,Liu Y H,Bei Y H,et al.Probabilistic teleportation via rotation operation and computation basis measurement[J].Chinese Journal of Quantum Electronics (量子电子学报),2004,21(6):740-744(in Chinese). |
[14] | Fang S D,Wang X C,et al.Proposal for realizing probabilistic teleportation of atomic state via cavity QED[J].Chinese Journal of Quantum Electronics (量子电子学报),2004,21(4):459-463 (in Chinese). |
[15] | Bennett C H,Divincenzo D P,Shor P W,et al.Remote state preparation[J].Phys.Rev.Left.,2001,87(7):077902. |
[16] | Lo H K.Classical-communication cost in distributed quantum-information processing:a generalization of quantum-communication complexity[J].Phys.Rev.A,2000,62(1):012313. |
[17] | Pati A K.Minimum classical bit for remote preparation and measurement of a qubit[J].Phys.Rev.A,2000,63(1):014302. |
[18] | Shi B S,Tomita A.Remote state preparation of an entangled state[J].J.Opt.B:Quantum Semiclass Opt.,2002,4:380-382. |
[19] | Zheng Y Z,Gu Y J,Guo G C.Remote state preparation via a non-maximally entangled channel[J].Chin.Phys.Left.,2002,19(1):14-16. |
[20] | Zeng B,Zhang P.Remote-state preparation in higher dimension and the parallelization manifold Sn-1[J].Phys.Rev.A,2002,65(2):022316. |
[21] | Berry D W,Sanders B C.Optimal remote state preparation[J].Phys.Rev.Lett.,2003,90(5):057901. |
[22] | Leung D W,Shot P W.Oblivious remote state preparation[J].Phys.Rev.Left.,2003,90(12):127905. |
[23] | Liu J M,Wang Y Z.Remote preparation of a two-particle entangled state[J].Phys.Left.A,2003,316:159-167. |
[24] | Liu J M,et al.Scheme for remotely preparing multipartite equatorial entangled states in high dimensions[J].Inter.J.Quant.Inform.,2004,2:237-245. |
[25] | Ye M Y,Zheng Y S,Guo G C.Faithful remote state preparation using finite classical bits and a nonmaximally entangled state[J].Phys.Rev.,2004,69(2):022310. |
[26] | Huang Y X,Zhan M S.Remote preparation of multipartite pure state[J].Phys.Lett.A,2004,327:404-408. |
[27] | Zhan Y B.Remote state preparation of a Greenberger-Horne-Zeilinger class state[J].Commun.Theor.Phys.,2005,43(4):637-640. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%