欢迎登录材料期刊网

材料期刊网

高级检索

耦合谐振子是量子光学中的重要问题之一,许多实际物理问题的解决都依赖于耦合谐振子的模型,因此研究耦合谐振子求解的简便方法显得十分必要.运用数学上二次型正交化理论构造了一个形式上的变换矩阵,使既有坐标耦合又有动量耦合的各向异性n维耦合谐振子的Hamiltonian对角化,求出了其本征值.并应用此方法求解了三维耦合谐振子的本征值,验证了该方法的正确性.由于该方法不需要求出变换矩阵的具体形式,使得运用此方法求解具有对称形式的Hamiltonian的本征值问题变得简单、易计算出结果,该方法更具有普遍性,是一种十分有效的代数方法.

参考文献

[1] Li Hongqi.Solve energy eigenvalue of the double harmonic oscillator by momentum coupling[J].Journal of Liaoeheng University(聊城大学学报),2004,17(3):27-28(in Chinese).
[2] Xu Shimin.Accurately solve the energy eigenvalue of the 2D double coupling harmonic oscillator by means of quadratic form theory[J].Journal of Liaocheng University(聊城大学学报),2006,19(3):42-44(in Chinese).
[3] Li Hongqi.Energy eigenvalue of the double coupling non-identical harmonic oscillators was solved accuratelyby transformation of coordinates[J].Journal of Qufu Normal University(曲阜师范大学学报),2005,31(1):58(in Chinese).
[4] Jiang Jijian,Li Hongqi,Li Chuan'an.Solution of accurate energy eigenvalues of the common bouble coupled harmonic oscillators via transfor mation of representations[J].College Physics(大学物理),2005,24(6):36-37(in Chinese).
[5] Xu Xiuwei,Guo Chun,et al.The eigenvalue and eigenfunction of a coupled quantum oscillator[J].College Physics (大学物理),2006,25(9):26-27(in Chinese).
[6] Lu Huaixin.Exact solution for non-identical n modes coupled harmonic oscillators[J].College Physics(大学物理),2000,19(5):19-20(in Chinese).
[7] Zhong Y D,Tang Z.General theory of linear quantum transformation in Bargmann-Fock space[J].Nuovo Cimento B,1994,109:387.
[8] Lu Huaixin,Chen Zengbing,Ma Lei,et al.Exact solution for a general supersymmetric quadratic system[J].Modern Physics Letters B,2002,16(7):241-250.
[9] Song Tongqiang,Fan Hongyi.Deriving energy-level gap for an arbitrary mumber of coupled identical oscillators by virtue of the invariant eigen-perator method[J].Modern Physics Letters A,2006,21(5):451-456.
[10] Yu Zhaoxia,Zhang Sumei,Miao Li'an.The Linear Algebra and the Analytic Geometry of Space(线性代数与空间解析几何)[M].Beijing:Chinese Press of Science and Technelogy,2003.188-197(in Chinese).
[11] Yu Sixia,Lu Huaixin.Theory of linear quantum transformation and its application[J].College P.hysics(大学物理),2004,23(10):3-7(in Chinese).
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%