耦合谐振子是量子光学中的重要问题之一,许多实际物理问题的解决都依赖于耦合谐振子的模型,因此研究耦合谐振子求解的简便方法显得十分必要.运用数学上二次型正交化理论构造了一个形式上的变换矩阵,使既有坐标耦合又有动量耦合的各向异性n维耦合谐振子的Hamiltonian对角化,求出了其本征值.并应用此方法求解了三维耦合谐振子的本征值,验证了该方法的正确性.由于该方法不需要求出变换矩阵的具体形式,使得运用此方法求解具有对称形式的Hamiltonian的本征值问题变得简单、易计算出结果,该方法更具有普遍性,是一种十分有效的代数方法.
参考文献
[1] | Li Hongqi.Solve energy eigenvalue of the double harmonic oscillator by momentum coupling[J].Journal of Liaoeheng University(聊城大学学报),2004,17(3):27-28(in Chinese). |
[2] | Xu Shimin.Accurately solve the energy eigenvalue of the 2D double coupling harmonic oscillator by means of quadratic form theory[J].Journal of Liaocheng University(聊城大学学报),2006,19(3):42-44(in Chinese). |
[3] | Li Hongqi.Energy eigenvalue of the double coupling non-identical harmonic oscillators was solved accuratelyby transformation of coordinates[J].Journal of Qufu Normal University(曲阜师范大学学报),2005,31(1):58(in Chinese). |
[4] | Jiang Jijian,Li Hongqi,Li Chuan'an.Solution of accurate energy eigenvalues of the common bouble coupled harmonic oscillators via transfor mation of representations[J].College Physics(大学物理),2005,24(6):36-37(in Chinese). |
[5] | Xu Xiuwei,Guo Chun,et al.The eigenvalue and eigenfunction of a coupled quantum oscillator[J].College Physics (大学物理),2006,25(9):26-27(in Chinese). |
[6] | Lu Huaixin.Exact solution for non-identical n modes coupled harmonic oscillators[J].College Physics(大学物理),2000,19(5):19-20(in Chinese). |
[7] | Zhong Y D,Tang Z.General theory of linear quantum transformation in Bargmann-Fock space[J].Nuovo Cimento B,1994,109:387. |
[8] | Lu Huaixin,Chen Zengbing,Ma Lei,et al.Exact solution for a general supersymmetric quadratic system[J].Modern Physics Letters B,2002,16(7):241-250. |
[9] | Song Tongqiang,Fan Hongyi.Deriving energy-level gap for an arbitrary mumber of coupled identical oscillators by virtue of the invariant eigen-perator method[J].Modern Physics Letters A,2006,21(5):451-456. |
[10] | Yu Zhaoxia,Zhang Sumei,Miao Li'an.The Linear Algebra and the Analytic Geometry of Space(线性代数与空间解析几何)[M].Beijing:Chinese Press of Science and Technelogy,2003.188-197(in Chinese). |
[11] | Yu Sixia,Lu Huaixin.Theory of linear quantum transformation and its application[J].College P.hysics(大学物理),2004,23(10):3-7(in Chinese). |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%