欢迎登录材料期刊网

材料期刊网

高级检索

利用改进的直接方法得到了一类Camassa-Holm方程的等价变换和对称群定理,建立了方程新解与旧解之间的关系,在已有的一些精确解的基础上利用对称群定理得到了Camassa-Holm方程的许多新的显式精确解.

A simple improved direct method is presented to find equivalence transformation for a class of Camassa-Holm equation. Applying this equivalence transformation, the theorem of symmetry group for the Camassa-Holm equation is obtained, which describes the relationship between the new solutions and the old ones. Some new exact and explicit solutions of the Camassa-Holm equation are obtained by the present references.

参考文献

[1] Camassa R,Holm D D.An integrable shallow water equation with peaked solitons[J].Phys.Rev.Lett.,1993,71:1661-1664.
[2] Constantin A.Existence of permanent and breaking waves for a shallow water equation:a geometric approach[J].Ann.Inst.Fourier(Grenoble),2000,50:321-362.
[3] Constantin A,Escher J.Wave breaking for nonlinear nonlocal shallow water equations[J].Aeta Mathematica,1998,181:229-243.
[4] Liu Zhengrong,Long Yao.Compacton-like wave and kink-like wave of GCH equation[J].Nonlinear Analysis:Real World Applications,2007,8:136-155.
[5] Qian Tifei,Tang Minying.Peakons and periodic cusp waves in a generalized Camassa-Holm equation[J].Chaos,Solitons and Fractals,2001,12:1347-1360.
[6] Abdul-Majid Wazwaz.Peakons,kinks,compactons and solitary patterns solutions for a family of Camassa-Holm equations by using new hyperbolic schemes[J].Applied Mathematics and Computation,2006,182:412-424.
[7] Lou Senyue,Ma Hongcai.Non-Lie symmetry groups of(2+1)-dimensional nonlinear systems obtained from a simple direct method[J].Journal of Physics A:Mathematical and General,2005,38:129-137.
[8] Ma Hongcai.A simple method to generate Lie point symmetry groups of the(3+1)-dimensional Jimbo-Miwa equation[J].Chinese Physics Letters,2005,22:554-557.
[9] Zheng Bin.New soliton solutions to 2+1 dimensional breaking soliton equation[J].Chinese Journal of Quantum Electronics(量子电子学报),2006,23:451-455(in Chinese).
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%