求出了初态为x态时Tavis-Cummings模型中两个有偶极相互作用原子的共生纠缠度,分析了偶极相互作用对纠缠的时间演化和纠缠突然死亡(ESD)的影响,以及共生纠缠度与原子间相互作用能的关系.结果表明,偶极相互作用对原子间的纠缠和ESD有显著的影响,会改变纠缠度的振荡周期和振幅,使出现ESD的时间间隔和次数减少.原子间的共生纠缠度与原子间相互作用能有着明显的对应关系,且与原子的初态有关.
The concurrence of the two atoms with dipole-dipole interaction in the Tavis-Cummings model in an initial x state is derived. The influence of the dipole-dipole interaction on the entanglement time evolution and the entanglement sudden death (ESD) is analysed. The relation between the concurrence and the atomic interaction energy is investigated. The results show that the dipole-dipole interaction affects the concurrence and ESD remarkably, leads periods and amplitudes 6f the concurrence oscillation to change and time interval and number of the ESD to decrease. The relation between the concurrence and interaction energy relies on initial states of the atoms.
参考文献
[1] | Y(o)nac M,Yu T,Eberly J H.Sudden death of entanglement of two Jaynes-Cummings atoms[J].J.Phys.B:At.Mol.Opt.Phys.,2006,39(15):s621-s625. |
[2] | Herec J,Fiurasek J,JR L M.Entanglement generation in continuously coupled parametric generators[J].J.opt.B:Quantum Semiclass.Opt.,2003,5:419-426. |
[3] | Zheng S B,Guo G C.Efficient scheme for two-atom entanglement and quantum information processing in cavity QED[J].Phys.Rev.Left.,2000,85(11):2392-2395. |
[4] | Yu T,Eberly J H.Finite-time disentanglement via spontaneous emission[J].Phys.Rev.Lett.,2004,93(14):140404. |
[5] | Huang W X,Wang M S,Wang Q M.Time evolution of two-atom entanglement in Tavis-Cummings model[J].Chinese Journal of Quantum Electronics(量子电子学报),2007,24(3):329-334(in Chinese). |
[6] | Wang Z C,Liu C L.Effect of the atomic entanglement on the fidelity of quantum states in the driving TavisCummings model[J].Chinese Journal of Quantum Electronics(量子电子学报),2008,25(2):191-197(in Chinese). |
[7] | Man Z X,Xia Y J,An N B.On conditions for atomic entanglement sudden death in cavity QED[J].J.Phys.B:At.Mol.Opt.Phys.,2008,41(8):085503. |
[8] | Sainz I,Bj(o)rk G.Entanglement invariant for the double Jaynes-Cummings model[J].Phys.Rev.A,2007,76(4):042313. |
[9] | Cui H T,Li K,Yi X X.A study on the sudden death of entanglement[J].Phys.Left.A,2007,365(1):44-48. |
[10] | Cavalcanti D,Oliveira J G,Jr.et al.Entanglement versus energy in the entanglement transfer problem[J].Phys.Rev.A,2006,74(4):042328. |
[11] | Ali M,Alber G,Rau A R P.Manipulating entanglement sudden death of two-qubit X-states in zero-and finitetemperature reservoirs[J].J.Phys.B:At.Mol.Opt.Phys.,2009,42:025501. |
[12] | Wang Z C,Wang Q,Gu Y J,et al.Eigenenergies and wave functions of the Tavis-Cummings system driven by an external classical coherent field[J].Aeta Phys.Sin.(物理学报),2005,54(1):107-112(in Chinese). |
[13] | Zhang Y D.Quantum Mechanics[M].Beijing:Science Press,2002:360-361(in Chinese). |
[14] | Tanas R,Ficek Z.Entangling two atoms via spontaneous emission[J].J.Opt.B:Quantum Semielass.Opt.,2004,6:s90-s97. |
[15] | Wootters W K.Entanglement of formation of an arbitrary state of two qubits[J].Phys.Rev.Lett.,1998,80(10):2245-2248. |
[16] | Hill S,Wootters W K.Entanglement of a pair of quantum bits[J].Phys.Rev.Lett.,1997,78(26):5022-5025. |
[17] | Shan C J,Xia Y J.The entanglement character of two entangled atoms in Tavis-Cummings model[J].Acta Phys.Sin.(物理学报),2006,55(4):1585-1590(in Chinese). |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%