利用线性量子变换理论(LQTT),导出在Fock空间中连续变量两体纠缠态的量子涨落计算的一般公式,并讨论此纠缠态的压缩特性.通过线性拟合的方法,得到当涨落度和纠缠熵分别出现极值时,态参数之间关系.结果显示当达到较大纠缠时,该态的压缩程度也较大,除此以外还得到了涨落度随参数和纠缠熵的变化关系.举例说明此公式在计算双模压缩真空态和单边双模压缩真空态的量子涨落中的应用.
By virtue of the linear quantum transformation theory(LQTT), a general formula is obtained, which calculate the quantum fluctuations for bipartite entangled state of continuous variables in Fock space. Moreover, the squeezed properties of the entangled state are discussed. The relations between the state parameters are depicted by means of the linear fitting, when the degree of the fluctuation and entanglement entropy reach the extremum. When the entangled state is maximally entangled, the results show that the squeezed degree is also maximaL In addition, the changing relationship between the quantum fluctuations and the quantum entanglement is acquired. The derived formula are used to calculate the fluctuation of the common two-mode squeezed vacuum state and the two-mode one-sided squeezed vacuum state as examples.
参考文献
[1] | Bennett C H,Brassard G,Crepeau C,et al.Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J].Phys.Rev.Lett.,1993,70(13):1895-1899. |
[2] | Ekert A K.Quantum cryptography based on Bells theorem[J].Phys.Rev.Lett.,1991,67(6):661-663. |
[3] | Bennett C H,et al.Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states[J].Phys.Rev.Lett.,1992,69(20):2881-2884. |
[4] | Einstein A,et al.Can quantum-mechanical description of physical reality be considered complete?[J].Phys.Rev.,1935,47(10):777-780. |
[5] | Schrodinger E.Die gegenwartige Situation in der Quantenmechanik[J].Natur-wissenschaften,1935,23(48):807-812. |
[6] | Liu Tangkun,Wang Jisuo,Zhan Mingsheng.Squeezing properties of entangled atoms interacting with optical field[J].Chinese Journal of Quantum Electronics(量子电子学报),2005,22(3):396-401 (in Chinese). |
[7] | Walls D F.Squeezed states of light[J].Nature,1983,306(11):141-146. |
[8] | Walls D F,Zoller P.Reduced quantum fluctuations in resonance fluorescence[J].Phys.Rev.Lett.,1981,47(10):709-711. |
[9] | Liu Tangkun.Squeezing properties in system of entangled atoms interacting with optical field of Schroedinger cat state[J].Chinese Journal of Quantum Electronics (量子电子学报),2006,23(5):641-646 (in Chinese). |
[10] | Xia Yunjie,Guo Guangcan.Squeezing and entanglement in continuous variable systems[J].Chin.Phys.Lett.,2004,21(10):1877-1880. |
[11] | Zhang Yongde,Tang Zhong.Quantum transformation theory in Fermion Fock space[J].J.Math.Phys.,1993,34(12):5639-5645. |
[12] | Wang Xiangbin,Yu Sixia,Zhang Yongde.Linear quantum transformation and normal product calculation of Boson exponential quadratic operators[J].J.Phys.A,1994,27(19):6563-6569. |
[13] | Ma Lei,et al.Linear quantum transformation in multi-mode Fermion Fock space and its applications[J].Nuovo Cimento B,1995,110(9):1103-1109. |
[14] | Zhang Yongde,Tang Zhong.Linear quatum transform theory in Bargmann-Fock space and its preliminary applications[J].Commun.Theor.Phys.,1995,23(1):57-64. |
[15] | Zhang Yongde,Ma Lei,Wang Xiangbin,et al.Two application of linear quantum transformation theory in multi-mode Fock space[J].Commun.Theor.Phys.,1996,26(2):203-206. |
[16] | Ma Lei.Some studies on quantum transformation theory in multi-mode Fock space[D].Hefei:Doctorial Dissertation of University of Science and Technology of China,1995 (in Chinese). |
[17] | Lu Huaixin.Some studies on quantum information theory for continuous variables[D].Hefei:Doctorial Dissertation of University of Science and Technology of China,2003 (in Chinese). |
[18] | Lu Wenhua,Lu Huaixin.Quantum nonlocality and entanglement for a two-mode squeezed vacuum state in a phase damping channel[J].Chinese Journal of Quantum Electronics(量子电子学报),2005,22(2):196-199 (in Chinese). |
[19] | Dai Fangwen,Ma Lei.Calculation of entanglement entropy for continuous-variable entangled state based on general two-mode Boson exponential quadratic operator in Fock space[J].Commun.Theor.Phys,2008,49(3):590-594. |
[20] | Zhou Yuxin,Xia Qingfeng,Sun Changyong.Quantum entanglement in system of two-mode squeezed vacuum state interacting with Bose-Einstein condensate[J].Chinese Journal of Quantum Electronics (量子电子学报),2008,25(3):312-316 (in Chinese). |
[21] | Fan Hongyi,Fan Yun.Relationship between squeezing and entangled state transformations[J].J.Phys.A,2003,36:5319-5332. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%