欢迎登录材料期刊网

材料期刊网

高级检索

在理论上研究了RY型四能级原子系统中的交叉Kerr非线性效应.采用微扰理论和密度矩阵方法导出三阶极化率实部随外加的相干耦合场强度和原子两基态间的无辐射衰减系数之间的关系.结果表明,在双光子Raman共振处,通过减小原子两基态间的无辐射衰减系数和提高外加的相干耦合场的强度,可以获得无吸收增强的交叉Kerr非线性效应.该研究结果在全光学开关上有着重要的应用潜力.

参考文献

[1] Wu H B,Chang H,Ma J,et al.Enhanced Kerr nonlinear effect of Raman transition in a A-type three-level atomic system[J].Acta Physica Sinia (物理学报),2005,54(8):3632-3636 (in Chinese).
[2] Wang H,Goorkey D,et al.Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system[J].Phys.Rev.Lett.,2001,87(7):073601.
[3] Schimdt H,Imamogiu A.Giant Kerr nonlinearities obtained by electromagnetically induced transparency[J].Opt.Lett.,1996,21(23):1936-1939.
[4] Kang H,Zhu Y.Observation of large Kerr nonlinearity at low light intensities[J].Phys.Rev.Lett.,2003,91(9):093601-093604.
[5] Yan M,Rickey E,Zhu Y.Observation of absorptive photon switching by quantum interference[J].Phys.Rev.A,2001,64(2):041801-041806.
[6] Yan M,Rickey E,Zhu Y.Nonlinear absorption by quantum interference in cold atoms[J].Opt.Lett.,2001,26(11):548-551.
[7] Lukin M D,Imamoglu A.Nonlinear optics and quantum entanglement of ultra-slow single photons[J].Phys.Rev.Lett.,2000,84(21):1419-1422.
[8] Shen Y,Wang H.The research of quantum coherence induced Kerr nonlinearity enhancement in four-level atomic system[J].Acta Sinica Quantum Optica (量子光学学报),2004,10(3):125-133 (in Chinese).
[9] Sinclair G F,Korolkova N.Effective cross-Kerr Hamiltonian for a nonresonant four-level atom[J].Phys.Rev.A,2008,77(3):033843(7).
[10] Payne M G,Deng L.Extremely slow propagation of a light pulse in an ultracold atomic vapor:a Raman scheme without electromagnetically induced transparency[J].Phys.Rev.A,2001,64(3):031802(4).
[11] Deng L,Hagley E W,Kozuma M,et al.Achieving very-low-loss group velocity reduction without electromagnetically induced transparency[J].Appl.Phys.Lett.,2002,81(7):1168-1170.
[12] Wang L J,Kuzmich A,Dogariu A.Gain-assisted superluminai light propagation[J].Nature,2000,406:277-279.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%