根据经典领域中的有限维紧框架研究量子领域中紧框架构造方法.由于紧框架与秩-广义量子测量有一一对应关系,在量子领域中设计了两种基于量子广义测量的紧框架构造方法.研究表明,这两种最优量子紧框架能分别解决两种基本的量子态区分策略:最小差错区分和最优无错区分.最小差错区分给定的一组向量,应用最小二乘准则,用广义量子测量方法构造了基于最小二乘测量(LSM)的最优量子紧框架.这种最优量子紧框架分为两种情况:一种是给定框架界的最小二乘框架(CLSF),另一种是选择最优框架界的最小二乘框架(ULSF),最优框架界能最小化最小二乘误差.用量子广义测量方法构造了基于最优无错区分的量子紧框架.最后举例对比了以上最优紧框架构造方法, ULSF为最优有限维紧框架.
参考文献
[1] | Duffin R J,Schaeffer A C.A class of nonharmonic Fourier series[J].Transactions of the American Mathematical Society,1952,72:314-366. |
[2] | Reams R,Waldron S.Isometric tight frame[J].Electron.J.Linear Algebra,2002,9:122-128. |
[3] | Casazza P G,Custom building finite frames[C].Contemp.Math.345:Wavelets,Frames and Operator Theory,Providence,RI:Amer.Math.Soc,2004:61-86. |
[4] | Xin Youming.Custom building finite tight frames[J].Journal of East China Normal University(华东师范大学学报),2007,5:59-61 (in Chinese). |
[5] | Janssen A J E M,et al.Characterization and computation of canonical tight windows for Gabor frames[OL].http://xxx.lanl.gov/abs/math.FA/0010245. |
[6] | Peres A.Neumark's theorem and quantum inseparability[J].Found.Phys.,1990,20(12):1441-1453. |
[7] | Peres A.Quantum Theory:Concepts and Methods[M].Dordrecht:Kluwer,1995. |
[8] | Helstrom C W.Quantum Detection and Estimation Theory[M].New York:Academic Press,1976. |
[9] | Jaeger G,Shimony A.Optimal distinction between two non-orthogonal quantum states[J].Phys.Lett.A,1995,197:83. |
[10] | Barnum H,Knill E.Reversing quantum dynamics with near-optimal quantum and classical fidelity[J].J.Math.Phys.,2002,43:2096-2106. |
[11] | Hausladen P,Wootters W K.A 'pretty good' measurement for distinguishing quantum states[J].Journal of Modern Optics,1994,41:2385-2390. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%