应用颗粒膜电介质晶体在低频极限下的准静态折射率、(εeffμeff)和静态折射率(εeff)的关系,分析和计算了光子晶体低频折射率.结果表明:由于低频电磁波诱导的涡流(或极化电流),使非磁性光子晶体显现反磁性共振,这个共振依赖于周期性颗粒的半径α和趋肤深度δ0之间的关系.即,如果δ0<<α,包含物内部电磁场被屏蔽,使每一种包含物的行为像μ=0的理想反磁性体.对于平行颗粒膜平面(H偏振)的电磁波,光子晶体的反磁性磁导率(μeff=1-f)总体上是随填充数的增加而线性地减少;相反地,当趋肤层大于半径,则反磁性体共振可以忽略.周期性颗粒的磁化引起静态和准静态折射率的结论,解释了非对易限制的问题.
参考文献
[1] | Zhang Yi,Wang Qi,Cheng Yuanyuan.Photonic band-gap properties and filtering application of one-dimensional multicomponent photonic crystal[J].Chinese Journal of Quantum Electronics(量子电子学报),2007,24(1):68-72(in Chinese). |
[2] | Jiang Ping,Hu Xiaoyong,Yang Hong,et al.Two-dimensional photonic crystals micro-cavity optical switch and tunable optical filter[J].Chinese Journal of Quantum Electronics(量子电子学报),2007,24(1):127(in Chinese). |
[3] | Feng Shuai,Wang Yiquan.Imaging properties of two-dimensional photonic crystal slab lens consisting of a rectangle lattice[J].Chinese Journal of Quantum Electronics(量子电子学报),2007,24(1):127(in Chinese). |
[4] | Gu Guochang,Li Hongqiang,Chen Hongtao,et al.Properties of light propagation in 1-D periodic dielectric structure[J].Acta Optica Sinica(光学学报),2000,20(6):728-734(in Chinese). |
[5] | Mcgurn A R,Maradudin A A.Photonic band structures of two-and three-dimensional periodic metal or semiconductor arrays[J].Phys.Rev.B,1993,48:17576. |
[6] | Moroz A.Three-dimensional complete photonic-band-gap structures in the visible[J].Phys.Rev.Lett.,1999,83:5274-5277. |
[7] | Fan S,Villeneuve P R,et al.Large omnidirectional band gaps in metallodielectric photonic-crystals[J].Phys.Rev.B,1996,54:11245. |
[8] | Hu X,Chan C T,et al.Diamagnetic response of metallic photonic crystals at infrared and visible frequencies[J].Phys.Rev.Lett.,2006,96:223901. |
[9] | Nicorovici N A,McPhedran R C,Botten L C.Photonic band gaps:noncommuting limits and the"acoustic band"[J].Phys.Rev.Lett.,1995,75:1507-1510. |
[10] | Poulton C,Guenneau S,Movchan A B.Noncommuting limits and effective properties for oblique propagation of electromagnetic waves through an array of aligned fibres[J].Phys.Rev.B,2004,69:195112-195120. |
[11] | Jackson J D.Classical Electrodynamics[M].3rd ed.New York:Wiley,1999. |
[12] | Halevi P,Krokhin A A,Arriaga J.Photonic crystal optics and homogenization of 2D periodic composites[J].Phys.Rev.Lett.,1999,82:719-722. |
[13] | Krokhin A A,Halevi P,et al.Long-wavelength limit(homogenization)for two-dimensional photonic crystals[J].Phys.Rev.B,2002,65:115208. |
[14] | Krokhin A A,Reyes E.Homogenization of magnetodielectric photonic crystals[J].Phys.Rev.Lett.,2004,93:023904-023908. |
[15] | Hu X,Chan C T.Refraction of water waves by periodic cylinder arrays[J].Phys.Rev.Lett.,2005,95:154501. |
[16] | Felbacq D.Noncommuting limits in homogenization theory of electromagnetic crystals[J].J.Math.Phys.,2002,43:52. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%