欢迎登录材料期刊网

材料期刊网

高级检索

利用齐次平衡法研究变系数强迫Burgers方程,得到了该方程的多孤立波解.用图形分析方法对孤立波之间的相互作用进行分析,观察到了在非均匀介质中及强迫项作用下形成的特殊扭结孤立波相互作用而产生的合并与分裂等新现象.合并(分裂)之后的特殊扭结孤立波可以继续振荡传播,也可以不振荡也不传播,还可以在原位置振荡但不传播.

参考文献

[1] Ablowitz M J,Clarkson P A.Solitons Nonlinear Evolution Equations and Inverse Scattering[M].Cambridge:Cambridge University Press,1991.
[2] Liu Shanliang,Wang Wenzheng,Xu Jingzhi.The solitary waves solution of the extend nonlinear Schr(o)dinger equation with the bandwidth-limited optical gain and loss terms[J].Chinese Journal of Quantum Electronics (量子电子学报),1994,11(1):55-60 (in Chinese).
[3] Taogetnsang,Sirendaoerji.Jacobi elliptic function exact solutions of sine-Gordon equation[J].Chinese Journal of Quantum Electronics (量子电子学报),2009,26(3):278-287 (in Chinese).
[4] Burgers J M.Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion[J].Trans.Roy.Neth.Aead.Sci.Amsterdam.,1939,17(2):1-53.
[5] Wang Mingliang.Nonlinear Evolution Equations and Solitons[M].Lanzhou:Lanzhou University Press,1990.
[6] Naranmandula,Wang kexie.Multisoliton-like solutions for (2+1)-dimensional dispersive long wave equations and (2+1)-dimensional Broer-Kaup equations[J].Acta Physica Siniea (物理学报),2003,52(7):1565-1568 (in Chinese).
[7] Tian Guichen,Liu Xiqiang.Exact solutions of the general variable coefficient KdV equation with external force term[J].Chinese Journal of Quantum Electronics (量子电子学报),2005,22(3):339-343 (in Chinese).
[8] Taogetusang,Sirendaoerji.The Jacobi elliptic function-like exact solutions to two kinds of KdV equations with variable coefficients and KdV equation with forcible term[J].Chinese Physics,2006,15(12):2809-2818.
[9] Guo Guanping,Zhang Jiefang.A method to solve soliton-like solution for a variable coefficient KP equation[J].Journal of Lanzhou University (Natural Sciences) (兰州大学学报(自然科学报)),2002,38(2):18-21 (in Chinese).
[10] Taogetnsang,Sirendaoerji.Jacobi-like elliptic function exact solutions of (3+1)-dimensional Zakharov-Kuznetsov equation with variable coefficients[J].Chinese Journal of Quantum Electronics (量子电子学报),2010,27(1):6-14 (in Chinese).
[11] Nimmo J J C,Crighton D G.Backlund transformations for nonlinear parabolic equations:the general results[J].Proc.R.Soc.Lond.A,1982,384:381-401.
[12] Hong W P.On B(a)cklund transformation for a generalized Burgers equation and sol]tonic solutions[J].Phys.Left.A,2000,268:81-84.
[13] Fusco D.Some comments on wave motion described by non-homogeneous quasi-linear first order hyperbolic systems[J].Meceaniea,1982,17:128-137.
[14] Ablowitz M J,De Lillo S.The Burgers equation under deterministic and stochastic forcing[J].Physiea D,1996,92:245-259.
[15] Gao Yitian,Xu Xiaoge,Tian Bo.Variable-coefficient forced burgers system in nonlinear fluid mechanics and its possibly observable effects[J].International Journal of Modern Physics C,2003,14(9):1207-1222.
[16] Blatter G.Vortices in high-temperature superconductors[J].Rev.Mod.Phys.,1994,66:1125-1128.
[17] Godreche C.Solids Far from Equilibrium[M].Cambridge:Cambridge University Press,1992.
[18] Oliveri F.Palnleve' analysis and similarity solutions of Burgers equation with variable coefficients[J].Journal of Engineering Mathematics,1991,25:317-327.
[19] Fusco D.Some comments on wave motion described by non-homgeneons quasi-linear first order hyperbolic systems[J].Meecaniea,1982,17:128-137.
[20] Doyle J,Englefield M J.Similarity solutions of a generalized Burgers equation[J].IMA J.Appl.Math.,1990,44:145-153.
[21] Wang Mingliang.Solitary wave solutions for variant Boussinesq equations[J].Phys.Left.A,1995,199:169-172.
[22] Wang Mingliang.Exact solutions for a compound KdV-Burgers equation[J].Phys.Left.A,1996,213:279-287.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%