欢迎登录材料期刊网

材料期刊网

高级检索

设计了一种基于液体选择填充三芯光子晶体光纤的1.31/1.55 μm波分解复用器.中间为缺失一个空气孔的普通二氧化硅纤芯,左右两纤芯填充了不同折射率的液体材料.根据光纤消逝场耦合的模式理论,不对称相邻波导存在波长相关耦合.不同填充折射率的两纤芯与中间纤芯分别耦合,构成两个不同响应波长的光滤波器.通过选择合适光纤长度,可实现不同波长光的分离.采用全矢量有限元法分析了光纤的传输特性,讨论了填充不同折射率液体时波导间的模式耦合,得到了其匹配波长与耦合长度.基于光束传播法仿真发现,长度为4.88 mm的光纤能实现1.31/1.55 μm波长光的解复用.

参考文献

[1] Knight J C,Birks T A,Russell P S J,et al.All-silica single-mode optical fiber with photonic crystal cladding[J].Opt.Lett.,1996,21:1547-1549.
[2] Knight J C,Broeng J,Birks T A,et al.Photonic band gap guidance in optical fibers[J].Science,1998,282:1476-1478.
[3] Birks T A,Knight J C,Russell P S J.Endlessly single mode photonic crystal fiber[J].Opt.Lett.,1997,22:961-963.
[4] Yang T J,Shen L F,Chan Y F,et al.High birefringence and low loss circular air-holes photonic crystal fiber using complex unit cells in cladding[J].Opt.Comnun.,2008,281:4334-4338.
[5] Wang Liang,Yang Dongxiao.Highly birefringent elliptical-hole rectangular-lattice photonic crystal fibers with modified air holes near the core[J].Opt.Expr.,2007,15(14):8892-8897.
[6] Vincetti L,Poli F,Selleri S.Confinement loss and nonlinearity analysis of air-guiding modified honeycomb photonic bandgap fibers[J].IEEE Photon.Technol.Lett.,2006,18:508-510.
[7] Wang Yamiao,Zhang Xia,Ren Xiaomin,et al.Design and analysis of a dispersion flattened and highly nonlinear photonic crystal fiber with ultralow confinement loss[J].Appl.Opt.,2010,49(3):292-297.
[8] Shen Linping,Huang Weiping,et al.Design of photonic crystal fibers for dispersion-related applications[J].J.Lightw.Technol.,2003,21(7):1644-1651.
[9] Wang Jingyuan,Jiang Chun,Hu Weisheng,et al.Dispersion and polarization properties of elliptical air-holecontaining photonic crystal fibers[J].Optics and Laser Technology,2007,39:913-917.
[10] Saitoh K,Koshiba M.Leakage loss and group velocity dispersion in aircore photonic bandgap fibers[J].Opt.Expr.,2003,11(23):3100-3109.
[11] Roberts P J,Mangan B J,Sabert H,et al.Control of dispersion in photonic crystal fibers[J].J.Opt.Fiber.Commun.Rep.,2005,2:435-461.
[12] Gao Jian,Zhang Xia,Zhou Huili,et al.Dispersion and nonlinear property in dispersion flattened photonic crystal fiber[J].Chinese Journal of Quantum Electronics(量子电子学报),2009,26(5):602-606 (in Chinese).
[13] Yariv A.Coupled-mode theory for guided-wave optics[J].IEEE J.Quantum Electron.,1973,9:919-933.
[14] Saitoh K,Sato Y,Koshiba M.Coupling characteristics of dual-core photonic crystal fiber couplers[J].Opt.Expr.,2003,11(24):3188-3195.
[15] Saitoh K,Sato Y,Koshiba M.Polarization splitter in three-core photonic crystal fibers[J].Opt.Expr.,2004,12:3940-3946.
[16] Wen Ke,Wang Rong,Wang Jingyuaa,et al.Polarization splitter based on resonant tunneling phenomenon in three-core photonic crystal fibers[J].Chinese Journal of Lasers(中国激光),2008,35(12):1962-1965 (in Chinese).
[17] Zhang Lin,Yang Changxi.Polarization-dependent coupling in twin-core photonic crystal fibers[J].J.Lightw.Technol.,2004,22(5):1367-1373.
[18] Wen Ke,Wang Jingyuan,Wang Rong.Polarization splitter based on two-core rectangular-lattice photonic crystal fibers[J].Chinese Journal of Quantum Electronics(量子电子学报),2008,25(4):505-508 (in Chinese).
[19] Yang Yue,Kai G,Wang Zhi,et al.Broadband single-polarization singlemode photonic crystal fiber coupler[J].IEEE Photon.Technol.Lett.,2006,18(19):2032-2034.
[20] Saitoh K,Florous N J,Koshiba M.Design of narrow band-pass filters based on the resonant-tunneling phenomenon in multi-core photonic crystal fibers[J].Opt.Expr.,2005,13(25):10327-10335.
[21] Wen Ke,Wang Rong,Wang Jingyuan,et al.A novel wavelength-division demultiplexer based on hybrid photonic crystal fibrs[J].Acta Optica Sinica(光学学报),2009,29(4):1088-1091 (in Chinese).
[22] Chen Mingyang,Zhou Jun,et al.A novel WDM component based on a three-core photonic crystal fiber.[J].J.Lightw.Technol.,2009,27(13):2343-2347.
[23] Eggleton B J,Kerbage C,Westbrook P S,et al.Microstructure optical fiber devices[J].Opt.Expr.,2001,9:698-713.
[24] Fang Hong,Lou Shuqin,Guo Tieying,et al.Novel-high birefringence photonic crystal fiber[J].Acta Optica Sinica (光学学报),2007,27(2):202-206 (in Chinese).
[25] Liou J H,Huang S S,Yu C P.Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers[J].Opt.Commun.,2010,283:971-974.
[26] Kerbage C,Eggleton B J.Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber[J].Opt.Expr.,2002,10:246-255.
[27] Zografopoulos D C,Kriezis E E.Tunable polarization properties of hybrid-guiding liquid-crystal photonic crystal fibers[J].J.Lightwave Technol.,2009,27:773-779.
[28] Ertman S,Wolinski T R,Pysz D,et al.Low-loss propagation and continuously tunable birefringence in high-index photonic crystal fibers filled with nematic liquid crystals[J].Opt.Expr.,2009,17(21):19298-19310.
[29] Matos C J S,Cordeiro C M B,Santos E M,et al.Liquid-core,liquid-cladding photonic crystal fibers[J].Opt.Expr.,2007,15(18):11207-11212.
[30] Qian Xiangzhong.Temperature sensor properties in total internal reflection-photonic crystal fibers based on liquid crystal filling[J].Chinese Journal of Quantum Electronics(量子电子学报),2009,26(3):380-384(in Chinese).
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%