欢迎登录材料期刊网

材料期刊网

高级检索

基于具有non-Markovian特性的关于量子系统约化密度矩阵的精确系统动力学方程,分别根据方程所具有的非封闭、不等时、积分微分方程的特性,通过Born逼近和Markov逼近得到关于量子系统约化密度矩阵的封闭、等时和微分的Markovian主方程;逐一分析了Markovian主方程的Lindblad形式、具有方便检验正定性的GKS表达形式、针对单量子位系统的Bloch球表达形式和无需明确的环境信息也能对开放系统进行描述的Kraus表达形式;分析并比较了能去除系统动力学方程non-Markovian特性的4种Markov逼近方法以及其他四种特定情形下常见的Markovian主方程;对于不适用于Markov逼近的情形,分析了能满足开放量子系统动力学对于系统状态要求的post-Markovian主方程;当热浴与量子系统发生能量交换,且热浴与量子系统组成的封闭系统能量守恒时,给出了热浴状态不恒定时开放量子系统的动力学方程,并通过Markov逼近得到Markovian主方程.

参考文献

[1] Cong S,Lou Y.Decoherence and control strategies in open quantum systems[J].Chinese Journal of Quantum Electronics(量子电子学报),2008,25(6):665-669 (in Chinese).
[2] Zhang Yongde.Principles of Quantum Information Physics(量子信息物理原理)[M].Beijing:Science Press,2006:130-131 (in Chinese).
[3] Esposito M,Gaspard P.Quantum master equation for a system influencing its environment[J].Phys.Rev.E,2003,68:066112.
[4] Zwolak M P.Dynamics and Simulation of Open Quantum Systems[D].Pasadena California:California Institute of Technology,2008.
[5] Xu R,Cui P,Li X,et al.Exact quantum master equation via the calculus on path integrals[J].The Journal of Chemical Physics,2005,122:041103.
[6] Stefanescu E,Scheid W,Sandulescu A.Non-Markovian master equation for a system of Fermions interacting with an electromagnetic field[J].Annals of Physics,2008,323(5):1168-1190.
[7] Weiss U.Quantum Dissipative Systems[M].3rd ed.,Singapore:World Scientific,2008:101-105.
[8] Gambetta J M.Non-Markovian Stochastic Schr(o)dinger Equations and Interpretations of Quantum Mechanics[D].Queensland:Doctoral Dissertation of Griffith University,2003.
[9] Sommerfeld G A,et al.Probleme der modernen physik[M].Festschrift zum 60,Hirzel,Leipzig,1928:30.
[10] Redfield A G.On the theory of relaxation processes[J].IBM J.Res.Dev.,1957,1:19-31.
[11] Thomas W,Richard P,Friesner A.Solution of the Redfield equation for the dissipation quantum dynamics of multilevel systems[J].J.Chem.Phys.,1994,100:5054.
[12] Wu J.Non-equilibrium stationary states from the equation of motion of open systems[J].New Journal of Physics,2010,12:083042.
[13] Lindblad G.On the generators of quantum dynamical semigroups[J].Commun.Math.Phys.,1976,48:119-130.
[14] Gaspard P,Nagaoka M.Slippage of initial conditions for the Redfield master equation[J].J.Chem.Phys.,1999,111:5668-5675.
[15] Suarez A,Silbey R,Oppenheim I.Memory effects in the relaxation of quantum open systems[J].J.Chem.Phys.,1992,97:5101.
[16] Strunz W T.The Brownian motion stochastic Schr(o)dinger equation[J].Chem.Phys.,2001,268:237-248.
[17] Esposito M,Gaspard P.Quantum master equation for a system influencing its environment[J].Phys.Rev.E,2003,68(6):066112.
[18] Kraus K.States,Effects and Operations:Fundamental Notions of Quantum Theory[M].Berlin:Springer-Verlag,1983:151-167.
[19] Melikidze A.Quantum Mechanics of Open Systems[D].Princeton:Princeton University,2001.
[20] Brauer H P.Exact quantum jump approach to open systems in bosonic and spin baths[J].Phys.Rev.A,2004,69:022115.
[21] Gutmann H P G.Description and Control of Decoherence in Quantum Bit Systems[D].Munchen:LudwigMaximilians University,2005.
[22] Gorini V,Kossakowski A,Sudarshan E C G.Completely positive dynamical semigroups of N-level systems[J].J.Math.Phys.,1976,17:821-825.
[23] Dacies E B.Markovian master equations ii.[J].Mathematical Annals,1976,219:147-158.
[24] Schirmer S G,Solomon A G.Construction on relaxation rates for N-level quantum systems[J].Phys.Rev.A,2004,70:022107.
[25] Daffer S L.Markovian and Non-Markovian State Evolution in Open Quantum Systems[D].Albuquerque,New Mexico:University of New Mexico,1999.
[26] Sifel C,Hohenester U.Optically triggered spin entanglement of electrons in semiconductors[J].Semiconductor Science and Technology,2004,19:S403.
[27] Lnczka J.On Markovian kinetic equations:Zubarev's nonequilibrium statistical operator approach[J].Physica A,1989,149:245-266.
[28] Celio M,Loss D.Comparison between different Markov approximations for open spin systems[J].Physica A,1989,158:769-783.
[29] Scully M O,Zubairy M S.Quantum Optics[M].Cambridge,England:Cambridge University Press,1997:255-256.
[30] Michael R G.Models for local Ohmic quantum dissipation[J].Phys.Rev.A,1993,48(2):1028-1034.
[31] Caldeira A O,Leggett A J.Influence of damping on quantum interference:An exactly soluble model[J].Phys.Rev.A,1985,31:1059.
[32] Dodonov A V,Mizrahi S S,Dodonov V V.Quantum master equations from classical Lagrangians with two stochastic forces[J].Phys.Rev.E,2007,75:011132.
[33] Havas P.The range of application of theLagrange formalism I[J].Nuovo.Cimento.Suppl.,1957,5:363.
[34] Oreshkov O.Topics in Quantum Information and the Theory of Open Quantum Systems[D].Los Angeles:University of Southern California,2008.
[35] Krovi K,Oreshkov O,Ryazanov M,et al.Non-Markovian dynamics of a qubit coupled to an ising spin bath[J].Phys.Rev.A,2007,76:052117.
[36] Shabani A,Lidar D A.Completely positive post-Markovian master equation via a measurement approach[J].Phys.Rev.A,2005,71(2):020101.
[37] Cohen D,Kottos T.Quantum dissipation due to the interaction with chaotic degrees of freedom and the correspondence principle[J].Phys.Rev.Lett.,1999,82:4951-4955.
[38] Marcus R A.Ion pairing and electron transfer[J].Adv.Chem.Phys.,1997,101:391-408.
[39] Deng Y,et al.Vibrational energy relaxation of polyatomic molecules in liquids:the solvent's perspective[J].J.Chem.Phys.,2002,117:1735-1749.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%