欢迎登录材料期刊网

材料期刊网

高级检索

通过利用修正的CK直接约化方法,建立了对称正则长波(SRLW)方程组的对称群理论.利用对称群理论建立了SRLW方程组的新旧解之间的关系,利用SRLW方程组的旧解得到了它们新的精确解.基于上述理论和SRLW方程组共轭方程组的解,得到了SRLW方程组的守恒律.

参考文献

[1] Seyler C E,Fanstermacler D C.A symmetric regularized long wave equation[J].Phys.Fluids.,1984,27(1):4-7.
[2] Chen L.Stability and instability of solitary waves for generalized symmetric regularized long wave equations[J].Phys.D,1998,118(1/2):53-68.
[3] Guo Bailing.The spectral method for symmetric regularized wave equations[J].J.Comput.Math.,1987,5(4):297-306.
[4] Zheng Jiadong,Zhang Rufen,Guo Benyu.Fourier fitting spectrum method of SRLW equation[J].Applied Mathematics and Mechanics(应用数学和力学),1989,10(9):801-810 (in Chinese).
[5] Zheng Jiadong. Fitting spectrum mix some solutions of the generalized SRLW equation[J].Computational Mathematics(计算数学),1989,11(1):64-72 (in Chinese).
[6] Guo Bailing.The existence of global solutions and " blow up " phenomena for a system of multi-dimensional symmetric regularized wave equations[J].Acta Math.Appl.Sinica,1992,8(1):59-72.
[7] Shang Yadong,Li Zhishen.The Fourier spectrum method applied in solution of high-dimensional generalized symmetric regularized long wave equations[J].Numerical Mathematics:A Journal of Chinese Universities(高等学校计算数学学报),1999,21(1):48-60 (in Chinese).
[8] Shang Yadong,Niu Pengcheng.Explicit exact solutions for the RLW equation and the SRLW equation in two space dimensions[J].Applied Mathematics(应用数学), 1998,11(3):1-5 (in Chinese).
[9] Ibragimov N H.A new conservation theorem[J].Mach.Anal.Appl.,2007,333:311-328.
[10] Dong Zhongzhou,et al.Exact travelling wave solutions of nonlinear coupled KdV equations[J].Chinese Journal of Quantum Electronics(量子电子学报),2006,23(3):379-382 (in Chinese).
[11] Tian Guichen,Liu Xiqiang.Exact solutions of the general variable coefficient KdV equation with external force term[J].Chinese Journal of Quantum Electronics(量子电子学报),2005,22(3):339-343 (in Chinese).
[12] Gao Jie,Liu Xiqiang,et al.New exact solutions and conservation laws to a (3+1)-dimensional nonlinear evolution equation[J].Chinese Journal of Quantum Electronics(量子电子学报),2009,26(1):16-22 (in Chinese).
[13] Guo Meiyu,Liu Xiqiang,Gao Jie.Differential invariants and group classification of KdV-Burgers equation[J].Chinese Journal of Quantum Electronics(量子电子学报),2009,26(2):138-147 (in Chinese).
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%