欢迎登录材料期刊网

材料期刊网

高级检索

在量子比特承诺协议中,目前流行的方案没有很好地解决信道噪声的影响,实用性不强.根据量子隐写术对信息的隐藏性,提出一种新的量子比特承诺协议.提出了利用量子信道噪声结合遮盖比特隐藏敏感信息,同时采用量子纠错码的方法克服信道噪声,有效地抵抗了第三方窃听攻击和噪声对信息的影响和破坏.通过理论分析与仿真证明该协议的绑定性和完善隐蔽性;理论证明了方案的有效性,为量子密码协议的推广应用提供了理论基础.

参考文献

[1] Blun M.Coin flipping by telephone[C].Proc.IEEE Sprint CompCom,Las Vegas,1982:133-137.
[2] Naor M.Bit commitment using pseudorandomness[J].Journal of Cryptology,1991,2(2):151-158.
[3] Damgard I,Fujisaki E.An integer commitment scheme based on groups with hidden order[C].Advances in Cryptology-ASIACRYPT,New Zealand,2002,125-142.
[4] Brassard G,Crepeau C,et al.A quantum bit commitment scheme provably unbreakable by both parties[C].Proceedings of 34th Annual IEEE Symposium on the Foundations of Computer Science,Palo Alto,California,USA,1993,362-371.
[5] Andrew C C Yao.Security of quantum protocols against coherent measurements[C].Proceedings of 26th Annual ACM Symposium on the Theory of Computing,Las Vegas,Nevada,USA,1995,67-75.
[6] Mayers D.Unconditional secure quantum bit commitment is impossible[J].Phys.Rev.Lett.,1997,78:3414-3417.
[7] Lo H K.Insecurity of quantum secure computations[J].Phys.Rev.A,1997,56:1154-1162.
[8] Ramos R V,Mendonca F A.Quantum bit commitment protocol without quantum memory[OL].http://arxiv.org/abs/0801.0690v1,2008.
[9] Magnin L,Magniez F,Leverrier A,et al.Strong no-go theorem for Gaussian quantum bit commitment[J].Phys.Rev.A,2010,81(1):010302.
[10] Li Q,Li C,et al.On the impossibility of non-static quantum bit commitment between two parties[OL].http://arxiv.org/abs/1101.5684v1,2011.
[11] Chailloux A,Kerenidis I.Optimal bounds for quantum bit commitment[OL].http://arxiv.org/abs/1102.1678v1,2011.
[12] Shaw B A,Brun T A.Quantum steganography[OL].http://arxiv.org/abs/1006.1934,2010.
[13] Shaw B A,Brun T A.Hiding quantum information in the perfect code[OL].http://arxiv.org/abs/ 1007.0793,2010.
[14] Ben-Aroya A, Ta-Shma A. On the complexity of approximating the diamond norm[OL].http://arxiv.org/abs/0902.3397v3,2009.
[15] Watrous J.Semidefinite programs for completely bounded norms[OL].http://arxiv.org/abs/0901.4709v2,2009.
[16] Benenti G,et al.Computing the distance between quantum channels:usefulness of the Fano representation[J].Journal of Physics B:Atomic,Molecular and Optical Physics,2010,43(21):215508.
[17] Nielsen M A,Chuang I L.Quantum Computation and Quantum Information[M].Beijing:Higher Education Press,2003:379.
[18] Zhang S L,Zhang S,Wang J.Continuous variable quantum dialogue protocol based on squeezed state[J].Chinese Journal of Quantum Electronics(量子电子学报),2011,28(3):335-340(in Chinese).
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%