欢迎登录材料期刊网

材料期刊网

高级检索

基于最大纠缠信道和非最大纠缠信道,提出了两个一类三量子比特W态的远程制备方案.在制备过程中,需要实施三量子比特的投影测量和一些幺正操作.计算了方案的成功几率和经典信息量消耗.结果显示,两个方案都能以一定几率高保真度地实现.此外,讨论了方案的特性并进行了可行性分析.结果表明,当被制备态属于一些特殊态时成功几率大大提高;方案也是切合目前的实验技术,具有可行性.

Two schemes are put forward to remotely implement the preparation of a class of three-qubit W states,which employ maximally entangled states and non-maximally entangled states as the quantum channels,respectively.In the course of the preparations,some local quantum operations including threequbit projective measurements and unitary transformations are required.The success probability and classical information cost were worked out canoncally.The result shows that both schemes can be faithfully achieved in a probabilistic manner.Furthermore,the properties of the presented schemes were disscussed and their experimental feasibility was evaluated.It is found that the success probability can be doubled if the prepared states belong to some special ensembles,and the schemes can be well implemented with the current technologies.

参考文献

[1] Ekert A.Quantum cryptography based on Bell's theorem[J].Phys.Rev.Lett.,1991,67(6):661-663.
[2] Bennett C H,Brassard G,Crepeau C,et al.Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J].Phys.Rev.Lett.,1993,70(13):1895-1899.
[3] Buzek V,Hillery M.Quantum copying:Beyond the no-cloning theorem[J].Phys.Rev.A,1996,54(3):1844-1852.
[4] Zhang W H,Dal J L,Cao Z L,et al.A class of optimal phase-covariant quantum cloning[J].Chinese Journal of Quantum Electronics (量子电子学报),2011,28(5):583-587 (in Chinese).
[5] Hillery M,Buzek V,Berthiaume A.Quantum secret sharing[J].Phys.Rev.A,1999,59(3):1829-1834.
[6] Lo H K.Classical-communication cost in distributed quantum-information processing:A generalization of quantum communication complexity[J].Phys.Rev.A,2000,62(1):012313.
[7] Bennett C H,DiVincenzo D P,Shor P W,et al.Remote state preparation[J].Phys.Rev.Lett.,2001,87(7):077902.
[8] Pati A K.Minimum classical bit for remote preparation and measurement of a qubit[J].Phys.Rev.A,2000,63(1):014302.
[9] Devetak I,Berger T.Low-entanglement remote state preparation[J].Phys.Rev.Lett.,2001,87(19):197901.
[10] Berry D W,Sanders B C.Optimal remote state preparation[J].Phys.Rev.Lett.,2003,90(5):057901.
[11] Leung D W,Shor P W.Oblivious remote state preparation[J].Phys.Rev.Lett.,2003,90(12):127905.
[12] Kurucz Z,Adam P,Janszky J.General criterion for oblivious remote state preparation[J].Phys.Rev.A,2006,73(5):062301.
[13] Hayashi A,Hashimoto T,Horibe M.Remote state preparation without oblivious conditions[J].Phys.Rev.A,2003,67(5):052302.
[14] Abeyesinghe A,Hayden P.Generalized remote state preparation:Trading cbits,qubits,and ebits in quantum communication[J].Phys.Rev.A,2003,68(6):062319.
[15] Ye M Y,Zhang Y S,Guo G C.Faithful remote state preparation using finite classical bits and a non-maximally entangled state[J].Phys.Rev.A,2004,69(2):022310.
[16] Liu J M,et al.Remote preparation of a three-particle state via positive operator-valued measurement[J].J.Phys.B,2009,42:055508.
[17] Wang D,et al.Remote preparation of a class of three-qubit states[J].Opt.Commun.,2008,281(4):871-875.
[18] Nguyen B A,Kim J.Joint remote state preparation[J].J.Phys.B,2008,41:095501.
[19] Nguyen B A.Joint remote state preparation via W and W-type states[J].Opt.Commun.,2010,283(20):4113-4117.
[20] Zhan Y B,Hu B L,Ma P C.Joint remote preparation of four-qubit cluster-type states[J].J.Phys.B,2011,44:095501.
[21] Kurucz Z,Adam P,Kis Z,et al.Continuous variable remote state preparation[J].Phys.Rev.A,2005,72:052315.
[22] Xiang G Y,Li J,Bo Y,et al.Remote preparation of mixed states via noisy entanglement[J].Phys.Rev.A,2005,72:012315.
[23] Liu W T,Wu W,Ou B Q,et al.Experimental remote preparation of arbitrary photon polarization states[J].Phys.Rev.A,2007,76:022308.
[24] Wu W,Liu W T,Chen P X,et al.Deterministic remote preparation of pure and mixed polarization states[J].Phys.Rev.A,2010,81:042301.
[25] Dur W,Vidal G,Cirac J I.Three qubits can be entangled in two inequivalent ways[J].Phys..Rev.A,2000,62:062314.
[26] Roos C F,Riebe M,Haffner H,et at.Control and measurement of three-qubit entangled states[J].Science,2004,304:1478-1480.
[27] Aharonov Y,Albert D Z,Vaidman L.How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100[J].Phys.Rev.Lett.,1988,60(14):1351-1354.
[28] Tian L,Lloyd S,Orlando T P.Projective measurement scheme for solid-state qubits[J].Phys.Rev.B,2003,67(22):220505(R).
[29] Plantenberg J H,De Groot P C,Harmans C J P M,et al.Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits[J].Nature,2007,447:836-839.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%