介绍了海森堡模型的不同位型[N,n](N为海森堡链总格点数,n为格点中自旋向下的电子数)中的体现本征值获取难易程度的本征值获取概率及其相应信息熵(香农所定义的)和体现模型体系关联程度的自旋向下电子发现概率、每一粒子的von Neumann及体系的平均von Neumann熵,可为量子计算与信息传递提供启示性信息.研究结果表明:1)事件发生概率大于(小于)50%时,信息熵随概率增加而减小(增加).2)不同位型[N,n],当n(N)同,N(n)增加时:本征值获取概率减小,其相应的信息熵正确反映本征值获取的难易程度;模型参数一定时,格点中自旋向下电子发现概率与每一粒子的von Neumann熵及体系的平均von Neumann熵都分别减小(增加).3)位型[N,n]相同时,每一粒子的von Neumann熵及体系的平均von Neumann熵随参数变化时出现拐点,显示体系发生量子相变的信息.4)同位型[N,n]且同参数时处于海森堡链对称位置粒子的von Neumann熵相同.
参考文献
[1] | Bose Sougato.Quantum communication through an unmodulated spin chain[J].Phys.Rev.Lett.,2003,91:207901. |
[2] | Ji Xin,Zhang Shou.Teleportation of the three-particle entangled state by the two EPR pairs[J].Chinese Journal of Quantum Electronics(量子电子学报),2006,23(6):816-819(in Chinese). |
[3] | Zha Xinwei.Expansion of orthogonal complete set and transformation operator in teleportation of three-particle entangled state[J].Chinese Journal of Quantum Electronics(量子电子学报),2007,24(2):179-182(in Chinese). |
[4] | Zhu Aidong,Zhang Shou.Quantum key distribution and controlled quantum direct communication applying product state of qutrit[J].Chinese Journal of Quantum Electronics(量子电子学报),2007,24(3):316-322(in Chinese). |
[5] | Chen Libing,Liu Yuhua,Bai Yihong,et al.Implementing a non-local SWAP operation on two entangled pairs by a three-qubit entangled state and a Bell-state[J].Chinese Journal of Quantum Electronics(量子电子学报),2006,23(4):489-493(in Chinese). |
[6] | Hao Xiang,Zhu Shiqun.Entanglement in a spin-s antiferromagnetic Heisenberg chain[J].Phys.Rev.A,2005,72:042306. |
[7] | Wang Xiaoguang.Boundary and impurity effects on the entanglement of Heisenberg chains[J].Phys.Rev.E,-2004,69:066118. |
[8] | Amico Luigi.Entanglement in many-body systems[J].Rev.Mod.Phys.,2008,80:517. |
[9] | Wang Xiaoguang.Entanglement in the quantum Heisenberg XY model[J].Phys.Rev.A,2001,64:012313. |
[10] | Gu Shijian,Tian Guanshan,Hai Qinglin.Ground-state entanglement in the XXZ model[J].Phys.Rev.A,2005,71:052322. |
[11] | Ren Jie,Zhu Shiqun.Density-matrix renormalization-group study of entanglement and entropy in an antiferromagnetic Heisenberg spin chain with domain walls[J].Phys.Rev.A,2008,77:034303. |
[12] | Cao Min,Zhu Shiqun.Thermal entanglement between alternate qubits of a four-qubit Heisenberg XX chain in a magnetic field[J].Phys.Rev.A,2005,71:034311. |
[13] | Wang Xiaoguang.Thermal and ground-state entanglement in Heisenberg XX qubit rings[J].Phys.Rev.A,2002,66:034302. |
[14] | Alberto Anfossi,Paolo Giorda.Two-point versus mnltipartite entanglement in quantum phase transitions[J].Phys.Rev.Lett.,2005,95:056402. |
[15] | .Gu Shijian.Entanglement and quantum phase transition in the extended Hubbard model[J].Phys.Rev.Lett.,2004,93:086402. |
[16] | Liang Shaorong,Liu Changnian.Calorifics(热学)[M].Beijing:Higher Education Press,2006:147.(in Chinese). |
[17] | Pan Feng,Liu Dan,Lu Guoying.Recent progress on entanglement of multipartite pure state[J].Journal of Liaoning Normal University(Natural Science)(辽宁师范大学学报(自然科学版)),2003,26(4):364-367(in Chinese). |
[18] | Pan Feng.Permutation group approach to the one-dimensional XXX Heisenberg open spin-1/2 chains[J].International Journal of Modern Physics,2004,C15:247-265. |
[19] | Yu Jiangde,Wang Xijie.Semantic role labeling based on maximum entropy model[J].Microelectronics & Computer,2010,27(8):174. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%