约瑟夫森结是一个很重要的超导元件,其电路模型关键参数的数值差别很大,传统的自适应同步方法不能准确识别小幅度参数,基于李亚谱诺夫稳定性理论构造带有增益系数的控制器和参数观测器,结合标度放大方法对约瑟夫森结混沌系统不同阶参数进行识别.以误差函数为统计量,在增益系数和放大因子的相空间给出同步和非同步区域分布,发现对两个小参数同时进行标度放大可以增加同步区域.该方法可以显著提高小参数的识别精度,数值计算结果验证了该方法的有效性.
参考文献
[1] | Josephson B D.Supercurrents through barriers[J].Adv.Phys.,1965,14:419-451. |
[2] | Song F B,Miiller F,et al.Compact tunable sub-terahertz oscillators based on Josephson junctions[J].Appl.Phys.Lett.,2011,98:142506. |
[3] | Crotty P,Schult D,Segall K.Josephson junction simulation of neurons[J].Phys.Rev.E,2010,82:011914. |
[4] | Feng Yuling,Shen Ke.Controlling the Chaos in a RCL-shunted Josephson junction and studying the influence of thermal noise[J].Chin.J.Phys.,2010,48(3):317-322. |
[5] | Hu Yating,Zhou Tiege,Zuo Tao,et al.Simulation research of subharmonic steps of Josephson junctions under RF radiation[J].Cryo.Supercond.,2007,35:279-282. |
[6] | Zhang Chaoxia,Yu Simin.A scheme for hyperchaotic secure communication and its implementation via digital signal processor[J].Chinese Journal of Quantum Electronics(量子电子学报),2009,26(4):456-464(in Chinese). |
[7] | Zhou Wujie,Yu Simin,Xu Wei.Study and hardware implementation of n x m-scroll chaotic attractors[J].Chinese Journal of Quantum Electronics(量子电子学报),2009,26(6):715-721(in Chinese). |
[8] | Luo Wenliang.Chaotic oscillator detection methods of weak signal in strong background noise of power line communication[J].Chinese Journal of Quantum Electronics(量子电子学报),2010,27(2):134-139(in Chinese). |
[9] | Zhang Lisen,Cai Li,et al.Analytical analysis of periodic solution and its stability in Josephson junction[J].Acta Physica Sinica(物理学报),2011,60:030308(in Chinese). |
[10] | Wang Zhenyu,Liao Hongyin,Zhou Shiping.Study of the DC biased Josephson junction coupled to a resonant tank[J].Acta Physica Sinica(物理学报),2001,50(10):1996~2000(in Chinese). |
[11] | He Qingli,Zhang Junqin,Lin Tao,et al.The numerical calculation of direct current Ⅰ-Ⅴ curve of super-conducting Josephon junctions[J].Journal of Northwest University(西北大学学报),2003,33(1):13-15(in Chinese). |
[12] | Feng Yuling,Wang Xueping,et al.Computer simulations for the intermittent-type chaos and chaos control in RC-shunted Josephson junction[J].Physics Experiment(物理实验),2007,27(11):16-18(in Chinese). |
[13] | Li Nong,Li Jianfen,Liu Yuping,et al.Parameter identification based on linear feedback control for uncertain chaotic system[J].Acta Physica Sinica(物理学报),2008,57:1404-1048(in Chinese). |
[14] | Li Jianfen,Li Nong,Cai Li,et al.Parameters identification and adaptive synchronization of uncertain Chua's circuit[J].Acta Physica Sinica(物理学报),2008,57(12):7500-7505(in Chinese). |
[15] | Zhou Tiege,Mao Jing,Liu Tingshu,et al.Phase locking and chaos in Josephson junction array shunted by a common resistance[J].Chin.Phys.Lett.,2009,26(3):077401-77403. |
[16] | Zhou Tiege,Wang Dingcheng,Zhao Xinjie,et al.Chaotic behavior of the Josephson junction array shunted by a common resistor[J].Cryo.Supercond.,2009,37(2):21-24. |
[17] | Ucar A,Lonngren K E,et al.Chaos synchronization in RCL-shunted Josephson junction via active control[J].Chaos,Solitons and Fractals,2007,31(1):105-111. |
[18] | Yan J J,Huang C F,Lin J S.Robust synchronization of chaotic behavior in unidirectional coupled RCLSJ models subject to uncertainties[J].Nonlinear Anal.:Real World Appl.,2009,10:3091-3097. |
[19] | Yang Xiaosong,Li Qingdu.A computer-assisted proof of chaos in Josephson junctions[J].Chaos,Solitons and Fractals,2006,27:25-30. |
[20] | Wu Bingguo,ZhaoZhigang,You Yuxin,et al.Phase transition and vortex noise spectrum in two-dimensional Josephson-junction array[J].Acta Physica Sinica(物理学报),2007,56(3):1680-1685(in Chinese). |
[21] | Zhou Tiege,Mao Jing,Liu Tingshu,et al.Chaos in Josephson junctions and its application in secure communications[J].Cryo.Supercond.,2009,37(4):1-5. |
[22] | Kautz R L,Monaco R.Survey of chaos in the rf-biased Josephson junction[J].J.Phys.,1985,57(3):875-889. |
[23] | Iansiti M,Hu Q,Westervelt R M,et al.Noise and chaos in a fractal basin boundary regime of a Josephson junction[J].Phys.Rev.Lett.,1985,55:746749. |
[24] | Hindmarsh J L,Rose R M.A model of the nerve impulse using two first-order differential equations[J].Nature (London),1982,276:162-164. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%