欢迎登录材料期刊网

材料期刊网

高级检索

量子信息分裂或量子态共享是经典秘密共享方案在量子方案中的概括.在量子信息分裂中,一种量子态的形式被划分并分发给多个接收者.提出一个通过使用六粒子的最大纠缠态作为量子通道来分裂两量子比特混态的方案.首先Alice执行两个Bell基测量并且宣布测量结果,同时分配Charlie(Bob)来重建未知的初态.如果控制者Bob(Charlie)同意帮助Charlie(Bob)获得初态,他们就在各自的量子比特上执行单粒子测量.在发送者对粒子执行Bell基测量以及合作者对粒子执行单粒子测量之后,通过运用适当的幺正算符,接收者可以重建发送者信息的初始状态.

Quantum information splitting (QIS) or quantum state sharing is the generalization of classical secret sharing schemes to the quantum scenario.In QIS,a piece of quantum information (in the form of a quantum state) is divided and distributed to a number of receivers.A scheme of splitting two-qubit states was proposed by using six particle maximally entangled state as the quantum channel.Alice first performs two Bell-basis measurement and announces her measurement outcome and assigns Charlie (Bob)to reconstruct the original unknown state.If the controllers Bob (Charlie) agree to help Charlie (Bob)obtain the original state,they should perform siugle-particle measurements on their respective qubits.After the sender performs Bell-basis measurements on her particles,and the cooperators operate single-particle measurements on their particles,the state receiver can reconstruct the original state of the sender by applying the appropriate unitary operation.

参考文献

[1] Bennett C H,Brassard G,Crepeau C,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J].Phys.Rev.Lett.,1993,70(13):1895-1899.
[2] Zha Xinwei,Ren Kuanfang.General relation between the transformatiou operator and an invariant under stochastic local operations and classical communication in quantum teleportation[J].Phys.Rev.A,2008,77:014306-014309.
[3] Zha Xinwei,Song Haiyang,Ren Kuanfang. The relation between local unitary transformation invariant and perfect quantum teleportation[J].IJQI,2010,8(8):1251-1256.
[4] Bennett C H,et al.Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states[J].Phys.Rev.Lett.,1992,69:2881-2884.
[5] Hillery M,Bu(z)ek V,Berthiaume A.Quantum secret sharing[J].Phys.Rev.A,1999,59:1829-1834.
[6] Zhang Dengyu,Tang Shiqing,Wang Xinwen,et al.A simple scheme for realizing four-photon GHZ state based on cavity quantum electrodynamics[J].Chinese Journal of Quantum Electronics(量子电子学报),2012,29(2):193-195(in Chinese).
[7] Tang Shiqing,Zhang Dengyu,Gao Feng,et al. Scheme for implementing a three-qubit Toffoli gate resonant interaction in bimode cavity QED system[J].Chinese Journal of Quantum Electronics(量子电子学报),2009,26(5):548-554(in Chinese).
[8] Zhan Xiaogui,Zhang Dengyu,Gao Feng,et al.Controlled teleportation of an arbitrary two-qubit superposition state[J].Chinese Journal of Quantum Electronics(量子电子学报),2009,26(1):44-49(in Chinese).
[9] Scherpelz P,Resch R,Berryrieser D,et al.Entanglement-secured single-qubit quantum secret sharing[J].Phys.Rev.A,2011,84:032303.
[10] Gottesman D.Theory of quantum secret sharing[J].Phys.Rev.A,2000,61:042311.
[11] Cleve R,Gottesman D,Lo H K.How to share a quantum secret[J].Phys.Rev.Lett.,1999,83:648.
[12] Lance A M,et al.Tripartite quantum state sharing[J].Phys.Rev.Lett.,2004,92:177903.
[13] Zhang Zhanjun,Li Yong,Man Zhongxiao,et al.Multiparty quantum secret sharing[J].Phys.Rev.A,2005,71:044301.
[14] Singh S K,Srikanth R.Generalized quantum secret sharing[J].Phys.Rev.A,2005,71:012328.
[15] Deng Fuguo,Li Xihan,Li Chunyan,et al.Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs[J].Phys.Rey.A,2005,72:044301.
[16] Gordon G,Rigolin G.Generalized quantum-state sharing[J].Phys.Rey.A,2006,73:062316.
[17] Zheng Shibiao.Splitting quantum information via W states[J].Phys.Rey.A,2006,74:054303.
[18] Muralidharan S,Panigrahi P K.Quantum-information splitting using multipartite cluster states[J].Phys.Rey.A,2008,78:032321.
[19] Zhan Youbang,Zhang Qunyong,Wang Yuwu. Schemes for splitting quantum information with four-particle.genuine entangled states[J].Commun.Theor.Phys.,2010,53:847.
[20] Wang Xinwen,Xia Lixin,Wang Zhiyong,et al.Hierarchical quantum-information splitting[J].Opt.Commun.,2010,283:1196.
[21] Borras A,Plastino A R,et al.Multiqubit systems:highly entangled states and entanglement distribution[J].Phys.A:Math.Theor.,2007,40.
[22] Zha Xinwei,Song Haiyang.Two schemes of remote preparation of a four-particle entangled W state via a six-qubit maximally entangled state[J].Phys.Scr.,2011,84:015010.
[23] Zha Xinwei,Song Haiyang.Remote preparation of a two-particle state using a four-qubit cluster state[J].Opt.Commun.,2011,284:1472-1474.
[24] Zha Xinwei,Song Haiyang.Optimal schemes of teleportation one-particle state by a three-particle general W state[J].Commun.Theor.Phys.,2010,53(5):852-854.
[25] Zha Xinwei,Song Haiyang.Teleportation and controlled teleportation with maximally four-qubit entanglement quantum states[J].Mod.Phys.Lett.B,2010,24(19):2069-2076.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%