研究了一种基于超导约瑟夫森电路探测非阿贝尔几何相位不对易特征的理论方案,实现了在宏观量子电路中对几何相位不对易性的探测.研究结果表明:通过调控外加磁通,体系能够产生两重简并的暗态并自然地诱导了几何相位.设置两个复合演化过程,考察体系在同一量子态占据几率的差值,可以直接地表征几何相位的不对易特征.进一步可行性和优势分析表明,该方案具有便易的操控性和较好的量子相干性,从而为实验上研究非阿贝尔几何相位的不对易特征提供一种有效的途径.
参考文献
[1] | Berry M V.Quantal phase-factor accompanying adiabatic changes[J].Proc.R.Soc.London A,1984,392(1802):45-57. |
[2] | Wilczek F,Zee A.Appearance of gauge structure in simple dynamical systems[J].Phys.Rev.Lett.,1984,52(24):2111. |
[3] | Zanardi P,Rasetti M.Holonomic quantum computation[J].Phys.Lett.A,1999,264(2-3):94-99. |
[4] | Feng Z B,et al.Holonomic quantum computation with superconducting charge-phase qubits in a cavity[J].Phys.Lett.A,2008,372(10):1589-1594. |
[5] | Brosco V,Fazio R,Hekking F W J,et al.Non-Abelian superconducting pumps[J].Phys.Rev.Lett.,2008,100(2):027002. |
[6] | Falci G,Fazio R,Palma G M,et al.Detection of geometric phases in superconducting nanocircuits[J].Nature,2000,407(6802):355-358. |
[7] | M(o)tt(o)nen M,Pekola J P,Vartiainen J J,et al.Measurement scheme of the Berry phase in superconducting circuits[J].Phys.Rev.B,2006,73(21):214523. |
[8] | Leek P J,Fink J M,Blais A,et al.Observation of Berry's phase in a solid-state qubit[J].Science,2007,318(5858):1889-1892. |
[9] | Zheng L M,Wang F Q,Liu S H.Geometric phase evolution of atom under non-Markovian environment[J].Acta Phys.Sin.(物理学报),2009,58(4):2430-2434(in Chinese). |
[10] | Yi Xuehua,et al.Berry's geometric phase for two spin-1/2 particles in an entangled quantum system[J].Chinese Journal of Quantum Electronics(量子电子学报),2010,27(3):293-299(in Chinese). |
[11] | Wang Y D,Xue F,Song Z,et al.Detection mechanism for quantum phase transition in superconducting qubit array[J].Phys.Rev.B,2007,76(17):174519. |
[12] | Yu Y,Zhu S L,Sun G,et al.Quantum jumps between macroscopic quantum states of a superconducting qubit coupled to a microscopic two-level system[J].Phys.Rev.Lett.,2008,101(15):157001. |
[13] | Wu S H,Hu M L,Li J,et al.Using Josephson charge qubits system to realize the transfer of a special kind of quantum state[J].Acta Phys.Sin.(物理学报),2011,60(1):010302 (in Chinese). |
[14] | You J Q,Nori F.Superconducting circuits and quantum information[J].Phys.Today,2005,58(11):42-47. |
[15] | Ji Y H,Xu L.Entanglement decoherence of coupled superconductor qubits entangled states in non-Markovian environment[J].Chinese Journal of Quantum Electronics (量子电子学报),2011,28(1):56-64 (in Chinese). |
[16] | Feng Z B,Yan R Y.Robust quantum computation with superconducting charge qubits via coherent pulses[J].Chin.Phys.Lett.,2010,27(1):010301. |
[17] | Astafiev O,Pashkin Y A,Yamamoto T,et al.Single-shot measurement of the Josephson charge qubit[J].Phys.Rev.B,2004,69(18):180507(R). |
[18] | Peng Z H,Zhang M J,Zheng D N.Detection of geometric phases in flux qubits with coherent pulses[J].Phys.Rev.B,2006,73(2):020502(R). |
[19] | M(o)tt(o)nen M,Vartiainen J J,Pekola J P.Experimental determination of the Berry phase in a superconducting charge pump[J].Phys.Rev.Lett.,2008,100(17):177201. |
[20] | Wang X B,Keiji M.Nonadiabatic detection of the geometric phase of the macroscopic quantum state with a symmetric SQUID[J].Phys.Rev.B,2002,65(17):172508. |
[21] | Zee A.Non-Abelian gauge structure in nuclear quadrupole resonance[J].Phys.Rev.A,1988,38(1):1. |
[22] | Feng Z B,Zhang Y M,Wang G Z,et al.Detecting non-Abelian geometric phases with superconducting nanocircuits[J].Physica E,2009,41(10):1859-1863. |
[23] | Faoro L,Siewert J,Fazio R.Non-Abelian holonomies,charge pumping,and quantum computation with Josephson junctions[J].Phys.Rev.Lett.,2003,90(2):028301. |
[24] | Ruseckas J,Juzeliúnas G,(O)hberg P,et al.Non-Abelian gauge potentials for ultracold atoms with degenerate dark states[J].Phys.Rev.Lett.,2005,95(1):010404. |
[25] | Zhang X D,Wang Z D,et al.Detecting unambiguously non-Abelian geometric phases with trapped ions[J].New J.Phys.,2008,10(4):043031. |
[26] | Bergmann K,Theuer H,et al.Coherent population transfer among quantum states of atoms and molecules[J].Rev.Mod.Phys.,1998,70(3):1003-1025. |
[27] | Pashkin Y A,Yamamoto T,Astafiev O,et al.Quantum oscillations in two coupled charge qubits[J].Nature,2003,421(6925):823-826. |
[28] | Liu Y X,You J Q,Wei L F,et al. Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit[J].Phys.Rev.Lett.,2005,95(8):087001. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%