欢迎登录材料期刊网

材料期刊网

高级检索

采用改进的Gram-Schmidt正交化法对矛盾方程的广义增广矩阵进行正交三角化,导出求解基于Zernike多项式的人眼波前像差拟合系数的算法.通过拟合给定模式系数和一般数学波面两种方式对算法进行了验证.验证结果表明,该算法与直接构造法方程组解法的计算精度相当.避免了因构造法方程组而引入的计算误差,易于编程,是一种比较理想的求解Zernike多项式拟合系数的算法.

参考文献

[1] Wang Yan.The main approaches for getting better visual and optical quality after refractive surgery[J].Chinese Journal of Optometry & Ophthalmology and Visual Science(中华眼视光学与视觉科学杂志),2012,14(1):1-4 (in Chinese).
[2] Lombardo M,Lombardo G.Wave aberration of human eyes and new descriptors of image optical quality and visual performance[J].Journal of Cataract Refractive Surgery,2010,36(2):313-331.
[3] Fan Rong,Qiu Yan,Di Yulan,et al.High-order aberrations in eyes with visual symptoms after LASIK[J].Chinese Journal of Optometry & Ophthalmology and Visual Science(中华眼视光学与视觉科学杂志),2012,14(1):16-21 (in Chinese).
[4] Sharma M,Wachler B S,Chan C C.Higher order aberrations and relative risk of symptoms after LASIK[J].Journal of Refractive Surgery,2007,23(3):252-256.
[5] Hament W J,Nabar V A,et al.Repeatability and validity of Zywave aberrometer measurements[J].Journal of Cataract & Refractive Surgery,2002,28(12):2135-2141.
[6] Cao Zhenglin,Liao Wenhe,Shen Jianxin,et al.Mathematical expression of the human eye's aberration and the designing and application of subjective wave-front aberrometer[J].Applied Laser(应用激光),2005,25(4):274-278(in Chinese).
[7] Howland H C.The history and methods of ophthalmic wave-front sensing[J].Journal of Refractive Surgery,2000,16(9/10):S552-S553.
[8] Thibos L N,Applegate R A,Schwiegerling J T,et al.Standards for reporting the optical aberration of eyes[J].Journal of Refractive Surgery,2002,18(5):S652-S665.
[9] He J C,Marcos S.Measurement of the wave-front aberration of the eye by a fast psychophysical procedure[J].J.Opt.Soc.Am.,1998,A15:2449-2455.
[10] Yan Jingzhou,Sun Houhuan,et al.A new algorithm for wavefront fitting using Zernike polynomial[J].Acta Mathematica Scientia(数学物理学报),2000,20(3):378-385(in Chinese).
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%