欢迎登录材料期刊网

材料期刊网

高级检索

利用自旋压缩研究了Yurke-like态的纠缠特性.Yurke-like态可以看成是一个对称量子态和两个特殊多粒子态的相干叠加,因此可以通过研究叠加系数和相对相位对自旋压缩参数的影响来研究Yurke-like态的纠缠特性;利用求极值的办法得到了最佳压缩方向角和最佳压缩值的解析表达式.结果表明:自旋压缩参数随叠加系数单调变化而随相对相位作周期性改变;粒子数越多,压缩程度越高.

参考文献

[1] Li Songsong,Huang Yibin.Entanglement of superposition of multi-states[J].International Journal of Quantum Information,2008,6:561.
[2] Chen Meixiang,Li Honghai,Huang Zhiping,et al.Teleportation of a three-particle W state without the Bell-state measurement[J].Chinese Journal of Quantum Electronics(量子电子学报),2006,23(3):393 (in Chinese).
[3] Zha Xinwei.Expansion of orthogonai complete set and transformation operator in teleportation of three-particle entangled state[J].Chinese Journal of Quantum Electronics(量子电子学报),2007,24(2):179 (in Chinese).
[4] Ji Xin,Zhang Shou.Teleportation of the three-particle entangled state by the two EPR pairs[J].Chinese Journal of Quantum Electronics (量子电子学报),2006,23(6):816 (in Chinese).
[5] Cao Zhuoliang,Dong Ping,Xue Zhenyan.Progress on quantum teleportation[J].Journal of Anhui University (安徽大学学报),2006,30(3):48 (in Chinese).
[6] Deng Fuguo,Li Chunyan,Li Yansong,et al.Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement[J].Phys.Rev.A,2005,72:022338.
[7] Man Zhongxiao,Xia Yunjie,Nguyen Ba An.Genuine multiqubit entanglement and controlled teleportation[J].Phys.Rev.A,2007,75:052306.
[8] Hao Jiucang,Li Chuanfeng,et al.Controlled dense coding using the Greenberger-Horne-Zeilinger state[J].Phys.Rev.A,2001,63:054301.
[9] Chen Jianglan,et al.Quantum dense coding in multiparticle entangled states via local measurements[J].Chin.Phys.Lett.,2004,21:12.
[10] Wan Hongbo,Ye Liu.Scheme for implementing quantum dense coding by using linear optical system[J].Chinese Journal ofQuantum Electronics(量子电子学报),2010,27(2):161 (in Chinese).
[11] Zhu Aidong,Zhang Shou.Quantum key distribution and controlled quantum direct communication applying product state of qutrit[J].Chinese Journal of Quantum Electronics(量子电子学报),2007,24(3):316 (in Chinese).
[12] Gao Yumei,Hu Lian.Non-adiabatic geometric quantum computation and topological quantum gates[J].Chinese Journal ofQuantum Electronics(量子电子学报),2006,23(2):183 (in Chinese).
[13] Zhang Gang,Dong Ping.Unconventional geometric quantum computation with quantum-dot spin qubits inside a cavity[J].Chinese Journal of Quantum Electronics(量子电子学报),2009,26(4)431 (in Chinese).
[14] Jin Guangri,Liu Yongchun,Liu Wuming.Spin squeezing in a generalized one-axis twisting model[J].New Journal of Physics,2009,11:073049.
[15] Kitagawa M,Ueda M.Squeezed spin states[J].Phys.Rev.A,1993,47:5138.
[16] Song Lijun,Yah Dong,Li Yongda.Properties of spin squeezing in the quantum chaotic system[J].Chinese Journal of Luminescence(发光学报),2007,28(3):336 (in Chinese).
[17] Hu Mingliang,Tian Dongping.Entanglement and spin squeezing in the three-and four-qubit Heisenberg XY spin chain[J].Journal of Atomic and Molecular Physics,2008,25(1):225.
[18] Lewenstein M,Kraus B,Cirac J I,et al.Optimization of entanglement witnesses[J].Phys.Rev.A,2000,62:052310.
[19] Wang Xiaoguang,Adam Miranowicz,Liu Yuxi,et al.Sudden vanishing of spin squeezing under decoherence[J].Phys.Rev.A,2010,81:022106.
[20] Joshua Combes,Wiseman H M.States for phase estimation in quantum interferometry[J].J.Opt.B:Quantum Semiclass.Opt.,2005,7:14.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%