欢迎登录材料期刊网

材料期刊网

高级检索

利用非最大六粒子纠缠簇态作为量子信道,实现推广的任意二粒子量子态的信息分离方案.结果表明分离者可以让接收方中的任意一方在另一方的帮助下通过适当的幺正操作得到任意未知二粒子量子态.该方案中需要推广的Bell基测量(GBM)和单粒子测量(SM),并通过引入辅助粒子寻找合适纠缠匹配的方法实现概率量子信息分离.计算了量子信息分离(QIS)方案的成功概率和经典信息损耗,若量子信道为最大纠缠信道,方案成功的概率为1,同时将消耗14 bit的经典信息.

参考文献

[1] Bennett C H,Brassard G,Crépeau C,et al.Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J].Phys.Rev.Lett.,1993,70:1895-1899.
[2] Bennett C H,et al.Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states[J].Phys.Rev.Lett.,1992,69:2881-2884.
[3] Gisin N,Massar S.Optimal quantum cloning machines[J].Phys.Rev.Lett.,79:2153-2156.
[4] Hou Kui,Wang Jing,Yuan Hao,et al.Assisted cloning of a class of unknown three-qubit GHZ state[J].Chinese Journal of Quantum Electronics(量子电子学报),2009,26(1):56 (in Chinese).
[5] Lo H K.Classical-communication cost in distributed quantum-information processing:A generalization of quantum communication complexity[J].Phys.Rev.A,2000,62:012313.
[6] Pati A K.Minimum classical bit for remote preparation and measurement of a qubit[J].Phys.Rev.A,2001,63:014302.
[7] Hillery M,Buzek V,Berthiaume A.Quantum secret sharing[J].Phys.Rev.A,1999,59:1829.
[8] Karlsson A,Koashi M,Imoto N.Quantum entanglement for secret sharing and secret splitting[J].Phys.Rev.A,1999,59:162.
[9] Bostrom K,Felbinger T.Deterministic secure direct communication using entanglement[J].Phys.Rev.Lett.,2002,89:187902.
[10] Hillery M,Bu(z)ek V,Berthiaume A.Quantum secret sharing[J].Phys.Rev.A,1999,59:1829.
[11] Tu Xiuli,et al.Splitting quantum information via six-qubit maximally entangled state[J].Chinese Journal of Quantum Electronics(量子电子学报),2012,29(5):577-583 (in Chinese).
[12] Deng Fuguo,et al.Bidirectional quantum secret sharing and secret splitting with polarized single photons[J].Phys.Lett.A, 2005,337:329.
[13] Long G L,Wang C,Li Y S,et al.Quantum secure direct communication[J].Sci.Sin.Phys.Mech.Astron (中国科学·物理学力学天文学),2011,41:332-342 (in Chinese).
[14] Lance A M,Symal T,Bowen W P,et al.Tripartite quantum state sharing[J].Phys.Rev.Lett.,2004,92:177903.
[15] Deng Fuguo,et al.Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs[J].Phys.Rev.A,2005,72:044301.
[16] Li Xihan,et al.Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state[J].J.Phys.B,2006,39:1975.
[17] Zheng S B.Splitting quantum information via W states[J].Phys.Rev.A,2006,74:054303.
[18] Hou Kui,Li Yibao,Shi Shouhua.Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements[J].Opt.Commun.,2010,283:1961-1965.
[19] Gordon G,et al.Generalized qnantum-state sharing[J].Phys.Rev.A,2006,73:062316.
[20] Muralidharan S,Panigrahi P K.Quantum-information splitting using multipartite cluster states[J].Phys.Rev.A,2008,78:062333.
[21] Wang Xinwen,Zhang Dengyu,Tang Shiqing,et al.Entanglement swapping for cluster-class states and its applications in quantum information processing[J].Int.J.Theor.Phys.,2012,51:1978-1988.
[22] Dal H Y,Chen P X,Liang L M,et al.Classical communication cost and remote preparation of the four-particle GHZ class state[J].Phys.Lett.A,2006,355:285-288.
[23] Li Wanli,Li Chuanfeng,Guo Guangcan.Probabilistic teleportation and entanglement matching[J].Phys.Rev.A,2000,61:034301.
[24] Zhang Ming,Dal Hongyi, Chen Pingxing,et al.Remote preparation of an entangled two-qubit state with three parties[J].Chin.Phys.B,2008,17:27-33.
[25] Raussendorf R,Briegel H J.A one-way quantum computer[J].Phys.Rev.Lett.,2001,86:5188.
[26] Xia Yia,Song Jie,Song Heshan.Classical communication help and probabilistic teleportation with onedimensional non-maximally entangled cluster states[J].Int.J.Theor.Phys.,2008,47:1552-1558.
[27] Hou Kui,Wang Jing,Lu Yilin,et al.Joint remote preparation of a multipartite GHZ-class state[J].Int.J.Theor.Phys.,2009,48:2005-2015.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%