利用可调节自旋过滤器模型,计算并讨论了磁场和电子跃迁能量间隔变化对量子点接触结构中自旋电子过滤特性的影响.研究发现,磁场和电子跃迁能量间隔的变化引起了自旋电子隧穿概率和隧穿电导都呈现出量子台阶效应,磁场的增加使电子的回旋频率和Zeeman能级分裂同时加强,从而导致量子点接触结构中的横向约束加强,而自旋过滤效应明显减弱;当磁场一定时,电子跃迁能量间隔越小,电子的自旋过滤效应越明显.电子跃迁能量间隔改变的同时,也改变了鞍形势的势垒形状和自旋过滤的灵敏度.对于不同的材料,同时考虑磁场和电子跃迁能量间隔的作用可以找到自旋过滤器的最佳过滤效果.尤为重要的是过滤器的结构用标准的电子束技术很容易得到,所以研究结论为设计新型自旋过滤器提供了理论依据,具有广阔的应用前景和潜在的商业价值.此外,使用朗道因子值较高的材料作自旋过滤器的衬底,可以进一步提高过滤器的性能.
参考文献
[1] | Wang Xiaowu,Xiao Juan,Li Jianhong,et al.Effect of spin on ground-state energy of weak-coupled magnetopolaron in asymmetry quantum dot[J].Chinese Journal of Quantum Electronics(量子电子学报),2011,28(4):483-489(in Chinese). |
[2] | Wang Qiwen,Hong Lan.Two-level system of a parabolic quantum dot[J].Chinese Journal of Quantum Electronics(量子电子学报),2011,28(1):110-114 (in Chinese). |
[3] | Zheng Dongmei,Wang Zhongchi.Built-in electric field and impurities on the two-electron binding energy of cylindrical quantum dot system effects[J].Chinese Journal of Quantum Electronics(量子电子学报),2011,28(1):96-103 (in Chinese). |
[4] | Saffarzadeh A,Farghadan R A.Spin-filter device based on armchair graphene nanoribbons[J].Appl.Phys.Lett.,2011,98:023106. |
[5] | Li Y H.Ballistic spin filtering across the ferromagnetic-semiconductor interface[J].Condensed Matter.Phys.,2012,4:26. |
[6] | Qin Hun,Williams D A.Radio-frequency point-contact electrometer[J].Appl.Phys.Lett.,2006,88:203506. |
[7] | Loss D,DiVincenzo D P.Quantum computation with quantum dots[J].Phys.Rev.A,1998,57:120. |
[8] | Ferry D K,Goodnick S M.Transport in Nanostructures[M].Canbridge University Press,2009:30-60. |
[9] | Liu Jianjun,Li Bozang,Li Yuxian.Conductance and thermopower in quantum point contact:Effect of magnetic field and temperature[J].Aeta Physica Siniea(物理学报), 2008,54:1366-1369 (in Chinese). |
[10] | DiVincenzo D P.The physical implementation of quantum computation[J].Quantum Physics,2000,4:25. |
[11] | Jonker B T,Kioseoglou G,Hanbicki A T,et at.Electrical spin-injection into silicon from a ferromagnetic metal/tunnel barrier contact[J].Nature Physics,2007,3:542-546. |
[12] | Gilbert M J,Bird J P.Application of split-gate structures as tunable spin filters[J].Appl.Phys.Lett.,2000,77:1050. |
[13] | Houten H V,Beenakker C.Quantum point contacts[J].Condensed Matter.Phys.,2005,12:23. |
[14] | Golub A,Aono T,Meir Y.Suppression of shot noise in quantum point contacts in the " 0.7 regime "[J].Phy.Rev.Lett.,2006,97:186801. |
[15] | B(u)ttiker M.Mesoscopic Quantum Transport[M].University of Geneva,2008:20-30. |
[16] | Rogge M C,Fricke C,et al.Tuning of tunneling rates in quantum dots using a quantum point contact[J].Physica E,2006,34:500-503. |
[17] | Jiang Hongliang,Zhang Rongjun,Zhou Hongming,et al.Parametric properties of the electron spin relaxation due to spin-orbit interaction in InAs quantum dots[J].Acta Physica Sinica(物理学报), 2011,60:017204 (in Chinese). |
[18] | Qin Jianhua,Guo Yong,Chen Xinyi,et al.A study on spin-polarized transport properties in magnetic-electric barrier structures[J].Acta Physica Sinica(物理学报),2003,52:2569(in Chinese). |
[19] | Sch(o)ll E.Theory of Transport Properties of Semiconductor Nanostructures[M].New York:Academic Press,1992:191. |
[20] | Fertig H A,Halperin B I.Transmission coefficient of an electron through a saddle-point potential in a magnetic field[J].Phy.Rev.B,1987,36:7969. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%