欢迎登录材料期刊网

材料期刊网

高级检索

基于飞秒光电子影像技术与飞行时间质谱,对氯丙烯(C3H5Cl)在200、400、800 nm飞秒脉冲下的光电离/解离机理进行了研究.结果表明:C3H5Cl的光电离/解离机理与激光波长存在依赖关系.在短波长200 nm,母体分子C3H5Cl以双光子电离为主要通道,其他的碎片离子则来源于C3H5Cl+的解离;当波长向长波方向变化,如800 nm时, C3H5Cl中间态的解离开始占主导地位,碎片离子的信号也相应增强.光电子能谱进一步证实了在400 nm和800 nm存在来源于中性碎片的光电子,这些中性碎片是由C3H5Cl的中间态直接解离产生的.这意味着在400 nm和800 nm母体分子可能被激发到寿命较短的中间解离态,解离产生中性碎片,使光解离过程在长波段扮演重要角色.

Based on femtosecond photoeletron imaging technique and time-of-flight mass spectroscopy,the photoionization/photodissociation mechanisms of allyl chloride (C3H5Cl) at 200,400,800 nm femtosecond laser pulses are investigated.Results show that the photoionization/photodissociation mechanisms of C3H5Cl have dependence on laser wavelength.At short wavelength 200 nm,two-photon ionization is the dominant channel of parent molecule C3H5Cl,and other fragment ions are generated by dissociation of CaH5Cl+.When it shifts to longer wavelength,such as 800 nm,dissociation from intermediate states of C3H5Cl starts to play a leading role,and the signals of fragment ions are also enhanced.Photoelectron spectra further confirm that there are photoelectrons coming from neutral fragments at 400 nm and 800 nm,and they are generated from dissociation of the intermediate states of C3H5Cl.It implies that at 400 nm and 800 nm,the parent molecule may be excited to intermediate dissociation states with shorter life-time and produce neutral fragments,which makes the process of light dissociation play an important role in the long waveband.

参考文献

[1] Castillejo M.;Martin M.;de Nalda R.;Couris S.;Koudoumas E..Dissociative ionization of halogenated ethylenes in intense femtosecond laser pulses[J].Chemical Physics Letters,20023-4(3-4):295-303.
[2] Huan Shen;Linqiang Hua;Zhenzhou Cao;Changjin Hu;Bing Zhang.C-Br bond fission dynamics in ultraviolet photodissociation of propargyl bromide[J].Optics Communications: A Journal Devoted to the Rapid Publication of Short Contributions in the Field of Optics and Interaction of Light with Matter,20093(3):387-391.
[3] 沈环;张冰.飞秒激光场中氯丙烯的光电离/解离机制研究[J].量子电子学报,2016(2):129-134.
[4] Fan H;Pratt ST.Determination of spin-orbit branching fractions in the photodissociation of halogenated hydrocarbons[J].The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory,200719(19):3901-3906.
[5] Myers TL.;Hu B.;Butler LJ.;Kitchen DC..INVESTIGATING CONFORMATION DEPENDENCE AND NONADIABATIC EFFECTS IN THE PHOTODISSOCIATION OF ALLYL CHLORIDE AT 193 NM[J].The Journal of Chemical Physics,199614(14):5446-5456.
[6] Melita L. Morton;Laurie J.Butler;Thomas A.Stephenson;Fei Qi.C-Cl bond fission, HCI elimination, and secondary radical decomposition in the 193 nm photodissociation of allyl chloride[J].The Journal of Chemical Physics,20027(7):2763-2775.
[7] Park MS.;Jung KH.;Lee KW..Br(P-2(j)) and Cl(P-2(j)) atom formation dynamics of allyl bromide and chloride at 234 nm[J].The Journal of Chemical Physics,200123(23):10368-10374.
[8] Liu Y;Butler LJ.C-Cl bond fission dynamics and angular momentum recoupling in the 235 nm photodissociation of allyl chloride[J].The Journal of Chemical Physics,200422(22):11016-11022.
[9] Fischer I;Schussler T;Deyerl HJ;Elhanine M;Alcaraz C.Photoionization and dissociative photoionization of the allyl radical, C3H5[J].International journal of mass spectrometry,20072-3(2-3):227-233.
[10] Gilbert T.;Fischer I.;Chen P.;Pfab R..The zero kinetic energy photoelectron spectrum of the propargyl radical, C3H3[J].The Journal of Chemical Physics,20006(6):2575-2578.
[11] T. Gilbert;Lngo Fischer;P. Chen.Zero kinetic energy photoelectron spectra of the allyl radical, C_3H_5[J].The Journal of Chemical Physics,20002(2):561-566.
[12] Yong Jin Bae;Mina Lee;Myung Soo Kim.One-photon mass-analyzed threshold ionization spectroscopy of 2-chloropropene (2-C_3H_5Cl) and its vibrational assignment based on the density-functional theory calculations[J].The Journal of Chemical Physics,20054(4):044306,1-8-0.
[13] 吴成印;龚旗煌.分子的飞秒强光电离[J].物理,2006(8):666-672.
[14] Hua LQ;Shen H;Hu CJ;Zhang B.Photoelectron imaging of atomic chlorine and bromine following photolysis of CH2BrCl[J].The Journal of Chemical Physics,200824(24):244308-1-244308-7-0.
[15] Shen, H.;Hua, L.;Hu, C.;Zhang, B..Photoelectron imaging of 8p Rydberg states of atomic iodine following methyl iodide A-band decomposition[J].Journal of Molecular Spectroscopy,20092(2):200-204.
[16] Vladimir Dribinski;Alexei Ossadtchi;Vladimir A. Mandelshtam;Hanna Reisler.Reconstruction of Abel-transformable images: The Gaussian basis-set expansion Abel transform method[J].Review of Scientific Instruments,20027(7):2634-2642.
[17] Wim G. Roeterdink;Maurice H. M. Janssen.Femtosecond velocity map imaging of dissociative ionization dynamics in CF_3I[J].Physical chemistry chemical physics: PCCP,20024(4):601-612.
[18] Torres I.;Martinez R.;Castano F..Electron-impact dissociative ionization of fluoromethanes CHF3 and CF4[J].Journal of Physics, B. Atomic, Molecular and Optical Physics: An Institute of Physics Journal,200211(11):2423-2436.
[19] Elshakre, Mohamed.Dissociative ionization of methanol in medium intense femtosecond laser field using time-of-flight mass spectrometry[J].Radiation Physics and Chemistry,2015:49-55.
[20] P. Farmanara;O. Steinkellner;M. T. Wick;M. Wittmann;G. Korn;V. Stert;W. Radloff.Ultrafast internal conversion and photodissociation of molecules excited by femtosecond 155 nm laser pulses[J].The Journal of Chemical Physics,199914(14):6264-6270.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%