以中间相沥青为原料,通过带形截面喷丝板进行熔融纺丝,对所获中间相沥青纤维进行适度氧化处理,而后通过热压工艺将氧化中间相沥青纤维进行无黏结自烧结成型,并借助红外分析和扫描电镜等手段研究了不同最终氧化温度对带状沥青纤维的官能团变化与由其自烧结制备高导热炭材料的成型性及性能影响.结果表明:经260 ℃不熔化处理的中间相沥青纤维热压成型,能获得具有高密度、高抗弯强度和高传导性的新型炭材料,所制备材料的密度高达2.16 g/cm3,抗弯强度达到125.9 MPa,电阻率和热导率分别达到0.56 μΩm和830 W/(m·K).
参考文献
[1] | N.C. Gallego;D.D. Edie .Structure-property relationships for high thermal conductivity carbon fibers[J].Composites, Part A. Applied science and manufacturing,2001(8):1031-1038. |
[2] | 邱海鹏,刘朗.高导热炭基功能材料[J].新型炭材料,2002(04):80. |
[3] | 邱海鹏,郭全贵,宋永忠,翟更太,宋进仁,刘朗.石墨材料导热性能与微晶参数关系的研究[J].新型炭材料,2002(01):36-40. |
[4] | Gallego NC.;Nysten B.;Issi JP.;Treleaven JW.;Deshpande GV.;Edie DD. .The thermal conductivity of ribbon-shaped carbon fibers[J].Carbon: An International Journal Sponsored by the American Carbon Society,2000(7):1003-1010. |
[5] | 王浩静,王红飞,李东风,朱星明,贺福,王心葵.石墨化温度对炭纤维微观结构及其力学性能的影响[J].新型炭材料,2005(02):157-163. |
[6] | Adams PM.;Rellick GS.;Stupian GW.;Katzman HA. .Characterization of high thermal conductivity carbon fibers and a self-reinforced graphite panel[J].Carbon: An International Journal Sponsored by the American Carbon Society,1998(3):233-245. |
[7] | 芦时林,Brian Rand.高导热大直径中间相沥青炭纤维的研制及结构表征[J].新型炭材料,2000(01):1-5. |
[8] | Bonal J P;Wu C H .Neutron irradiation effects on the thermal conductivity and dimensional stability of carbon fiber composites at divertor conditions[J].Journal of Nuclear Materials,1996,228(02):155-161. |
[9] | Lewis JS.;Vaidyaraman S.;Lackey WJ. .MODEL FOR PREDICTION OF MATRIX MICROSTRUCTURE FOR CARBON/CARBON COMPOSITES PREPARED BY FORCED FLOW THERMAL GRADIENT CVI[J].Carbon: An International Journal Sponsored by the American Carbon Society,1997(1):103-112. |
[10] | Park SJ;Lee J.-R. --;Pak P.-K. --;Cho M.-S. -- .Influence of molybdenum disilicide filler on carbon-carbon composites[J].Carbon: An International Journal Sponsored by the American Carbon Society,1999(11):1685-1689. |
[11] | 高晓晴,郭全贵,史景利,李贵生,宋进仁,刘朗.短切炭纤维-炭复合材料的制备及传导性能和微观结构的研究[J].新型炭材料,2005(01):18-22. |
[12] | 沈曾民,迟伟东,张学军,常维璞.石油沥青基炭纤维的制备[J].新型炭材料,2005(01):1-7. |
[13] | Enweani BN.;Haasz AA.;Davis JW. .THERMAL DIFFUSIVITY CONDUCTIVITY OF DOPED GRAPHITES[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,1995(3):245-253. |
[14] | 张光晋,郭全贵,刘占军,刘朗.掺钛石墨导电性及其微观结构的研究[J].新型炭材料,2000(04):35-38. |
[15] | 张光晋,郭全贵,刘占军,要立中,刘朗.掺杂石墨导热性能的研究[J].新型炭材料,2001(01):25-28. |
[16] | Haipeng Qiu;Yongzhong Song;Lang Liu;Gengtai Zhai;Jingli Shi .Thermal conductivity and microstructure of Ti-doped graphite[J].Carbon: An International Journal Sponsored by the American Carbon Society,2003(5):973-978. |
[17] | Haipeng Qiu;Lijun Han;Lang Liu .Properties and micro structure of graphitised ZrC/C or SiC/C composites[J].Carbon: An International Journal Sponsored by the American Carbon Society,2005(5):1021-1025. |
[18] | Burtseva T.;Mazul I.;Garciarosales C.;Deschka S.;Behrisch R.;Herrmann A.;Barabash V. .PERFORMANCE OF THE TI DOPED GRAPHITE RG-TI-91 AT THE DIVERTOR OF THE TOKAMAK ASDEX UPGRADE[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,1997(0):716-721. |
[19] | Morgan W C .Thermal expansion coefficients of graphite crystals[J].CARBON,1972,10:73-79. |
[20] | 谢有赞.炭石墨材料工艺[M].湘潭:湖南大学出版社,1998:350. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%