欢迎登录材料期刊网

材料期刊网

高级检索

神经网络是一种旨在模仿人脑结构及其功能的软计算方法.它具有优良的容错性、自组织性和突出的非线性映射能力.最近几年,神经网络开始渗透到膜技术领域,为膜过程的研究和应用提供了一种全新的表达工具.目前,神经网络涉及到的膜过程包括MF、UF、NF以及RO等.在简要介绍了神经网络的结构与理论的基础上,分别评述了神经网络在这些膜过程中应用的研究现状,并展望了今后的研究方向.

参考文献

[1] HOSKINS J C;Himmelblau B M .Artificial neural networks models of knowledge presentation in chemical engineering[J].Computers and chemical engineering,1988,12:881-891.
[2] RUMELHART D E;Hinton G E;Williams R J .Learning representations of by back-propagating errors[J].NATURE,1986,323:533-536.
[3] Dornier M.;Trystram G.;Lebert A.;Decloux M. .DYNAMIC MODELING OF CROSSFLOW MICROFILTRATION USING NEURAL NETWORKS[J].Journal of Membrane Science,1995(3):263-273.
[4] Piron E;Latrille E;Rene F .Application of artificial neural networds for crossflow microfiltration modeling:"black-box"and semi-physical approaches[J].Computers and Chemical Engineering,1997,21:1021-1030.
[5] Hamachi M;Cabassud M;Davin A et al.Dynamic modeling of crossflow microfiltration of bentonite suspension using recurrent neural networks[J].Chemical Engineering Progress,1999,38:203-210.
[6] Meyer F;Gehmlich I;Gorak A et al.Analysis and simulation of complex interactions during dynamic microfiltration of Escherichia coli suspensions[J].Biotechnology and Bioengineering,1998,59:189-202.
[7] Niemi H.;Palosaari S.;Bulsari A. .SIMULATION OF MEMBRANE SEPARATION BY NEURAL NETWORKS[J].Journal of Membrane Science,1995(1/3):185-191.
[8] Bowen WR.;Yousef HNS.;Jones MG. .Dynamic ultrafiltration of proteins - A neural network approach[J].Journal of Membrane Science,1998(2):225-235.
[9] Bowen WR.;Yousef HNS.;Jones MG. .Prediction of the rate of crossflow membrane ultrafiltration of colloids: A neural network approach[J].Chemical Engineering Science,1998(22):3793-3802.
[10] TEODOSIU C;Pastravanu O;Macoveanu M .Neural networks models for ultrafiltration and backwashing[J].Water Research,2000,34:4371-4380.
[11] Bhattacharjee C;Singh M .Studies on the applicability of artificial neural network in continuous stirred ultrafiltration[J].Chemical Engineering and Technology,2002,25:1187-1192.
[12] DELGRANGE N;Cabassud C;Cabassud M et al.Modeling of ultrafiltration fouling by neural network[J].DESALINATION,1998,118:213-227.
[13] Delgrange N.;Cabassud M.;Durand-Bourlier L.;Laine JM.;Cabassud C. .Neural networks for prediction of ultrafiltration transmembrane pressure - application to drinking water production[J].Journal of Membrane Science,1998(1):111-123.
[14] N.Delgrange-Vincent;c.Cabassud;M.Cabassud;L.Durand-Bourlier;J.M.Laine .Neural networks forlong term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production[J].Desalination: The International Journal on the Science and Technology of Desalting and Water Purification,2000(1/3):353-362.
[15] Cabassud M;Delgrange N;Cabassud C et al.Neural networds:A tool to improve UF plant productivity[J].Desalination,2002,145:223-231.
[16] Bowen W.Richard;Jones Meirion G.;Welfoot Julian S.;Yousef Haitham N.S. .Predicting salt rejections at nanofiltrationmembranes using artificial neural networks[J].Desalination: The International Journal on the Science and Technology of Desalting and Water Purification,2000(2):147-162.
[17] Grishma R. Shetty;Heidar Malki;Shankararaman Chellam .Predicting contaminant removal during municipal drinking water nanofiltration using artificial neural networks[J].Journal of Membrane Science,2003(1/2):99-112.
[18] Chen J C;Seidel A .Cost optimization of nanofiltration with fouling by natural organic matter[J].Journal of Environmental Engineering,ASCE,2002,128:967-973.
[19] Mutaz M.Jafar;Ali Zilouchian .Adaptive receptive fields for radial basis functions[J].Desalination: The International Journal on the Science and Technology of Desalting and Water Purification,2001(1/3):83-91.
[20] Zilouchian A;Jafar M .Automation and process control of reverse osmosis plants using soft computing methodologies[J].Desalination,2001,135:51-59.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%