欢迎登录材料期刊网

材料期刊网

高级检索

利用慢应变速率拉伸试验方法研究高强度钢SCM435的氢脆敏感性.结果表明,SCM435钢经淬火回火抗拉强度为1450MPa时具有高的氢脆敏感性.经充氢后试样的缺口拉伸强度降低,并且随可扩散氢含量的增加,缺口拉伸强度呈幂函数方式下降.不同应力集中系数试样的试验表明,氢致断裂与局部氢浓度峰值和应力峰值有关.

参考文献

[1] Troiano A R .The role of hydrogen and other interstitials in the mechanical behavior of metals[J].Transactions of ASM,1960,52:54-80.
[2] Akhurst K N;Baker T J .The threshold stress intensity for hydrogen-induced crack growth[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1985,12(06):1059-1070.
[3] D.G. ENOS;J.R. SCULLY .A Critical-Strain Criterion for Hydrogen Embrittlement of Cold-Drawn, Ultrafine Pearlitic Steel[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2002(4):1151-1166.
[4] Y. Kimura;Y. Sakai;T. Hara;A. Belyakov;K. Tsuzaki .Hydrogen induced delayed fracture of ultrafine grained 0.6% O steel with dispersed oxide particles[J].Scripta materialia,2003(11):1111-1116.
[5] Fu-Gao WEI;Toru HARA;Takehiro TSUCHIDA .Hydrogen Trapping in Quenched and Tempered 0.42C-0.30Ti Steel Containing Bimodally Dispersed TiC Particles[J].ISIJ International,2003(4):539-547.
[6] Nagumo M .Hydrogen related failure of steels - a new aspect[J].Materials Science and Technology: MST: A publication of the Institute of Metals,2004(8):940-950.
[7] Wang M Q;Akiyama E;Tsuzaki K .Hydrogen effect on the fracture behavior of high strength Cr-Mo steel[J].Materials Science Forum,2006,512:55-60.
[8] Thompson A W .Hydrogen-assisted fracture at notches[J].Materials Science and Technology,1985,1(09):711-718.
[9] Thompson A W;Knott J F .Micromechanisms of brittle fracture[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1993,24(03):523-534.
[10] Wang MQ;Akiyama E;Tsuzaki K .Fracture criterion for hydrogen embrittlement of high strength steel[J].Materials Science and Technology: MST: A publication of the Institute of Metals,2006(2):167-172.
[11] Maoqiu Wang;Eiji Akiyama;Kaneaki Tsuzaki .Hydrogen Degradation of a Boron-Bearing Steel with 1050 and 1300 Mpa Strength Levels[J].Scripta materialia,2005(5):403-408.
[12] Maoqiu Wang;Eiji Akiyama;Kaneaki Tsuzaki .Effect of hydrogen and stress concentration on the notch tensile strength of AISI 4135 steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(1/2):37-46.
[13] M. WANG;E. AKIYAMA;K. TSUZAKI .Crosshead Speed Dependence of the Notch Tensile Strength of a High Strength Steel in the Presence of Hydrogen[J].Scripta materialia,2005(6):713-718.
[14] Kenichi TAKAI;Ryu WATANUKI .Hydrogen in Trapping States Innocuous to Environmental Degradation of High-strength Steels[J].ISIJ International,2003(4):520-526.
[15] Kiuchi K;McLellan R B .The solubility and diffusivity of hydrogen in well-annealed and deformed iron[J].Acta Materialia,1983,31(07):961-984.
[16] Choo W Y;Lee J Y .Thermal analysis of trapped hydrogen in pure iron[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1982,13(01):135-140.
[17] Gerberich W W;Chen Y T .Hydrogen-controlled cracking-An approach to threshold stress intensity[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1975,6(02):271-278.
[18] Li J C M;Oriani R A;Darken L W .The thermodynamics of stressed solids[J].Zeitschrift für Physikalische Chemie,1966,49:271-290.
[19] Hirth J P .Effects of hydrogen on the properties of iron and steel[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1980,11(06):861-890.
[20] C.J.McMahon Jr. .Hydrogen-induced intergranular fracture of steels[J].Engineering Fracture Mechanics,2001(6):773-788.
[21] Maoqiu Wang;Eiji Akiyama;Kaneaki Tsuzaki .Determination of the critical hydrogen concentration for delayed fracture of high strength steel by constant load test and numerical calculation[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,2006(8):2189-2202.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%