用人工神经网络模型分析了镍氢电池阴极材料的合金成分对电化学容量衰减速度的影响.用"留一法"训练了模型,模型对训练样本的计算值与实测值在散点图中沿0~45°对角线分布,误差为:均方误差(MSE)为0.1195,相对均方误差(MSRE)为20.54%,拟合值(VOF)为1.9144.对合金成分的分析结果表明:电化学容量的衰减速度随Ni含量的增加而下降,随Co、Al和Si含量的增加而增大,La含量和Nd含量的影响不大.
参考文献
[1] | 唐致远,张晓阳,刘元刚,柳勇.正极添加Na2WO4对镍氢电池高温性能的影响[J].物理化学学报,2006(07):895-898. |
[2] | 刘旭,陆文聪,陈念贻,姚莉秀,叶晨洲.支持向量机算法在镍氢电池阴极材料研制中的应用[J].计算机与应用化学,2002(06):731-732. |
[3] | Hecht-Nielsen.Neurocomputing[M].Massachussetes:Addison Wesley Publishing Co Inc,1991:59-63. |
[4] | 由伟,白秉哲,方鸿生.钢的连续冷却转变图的神经网络计算模型及预测软件设计[J].金属热处理,2004(07):17-20. |
[5] | 康德山;王学业;陈念贻 .模式识别辅助镧镍电极的设计[J].中国稀土学报,1996,14:365. |
[6] | V. NARAYAN .Estimation of Hot Torsion Stress Strain Curves in Iron AlloysUsing a Neural Network Analysis[J].ISIJ International,1999(10):999-1005. |
[7] | Sung-Sau So;Martin Karplus .Evolutionary optimization in quantitative structure-activity relationship:an application of genetic neural networks[J].Journal of Medicinal Chemistry,1996,39(07):1524. |
[8] | Cybenko G.Mathematics of Control,Signals and Systems[M].New York:Springer International Press,1980:303-314. |
[9] | Hornik K;Baldi P .Multilayer feedforward networks are universal approximators[J].Neural Networks,1989,2:359-366. |
[10] | Chen TP;Chen H;Liu R W .Approximation capability in C(Rn-) by multilayer feedforward networks and related problems[J].IEEE Transactions on Neural Networks,1995,6(01):25-30. |
[11] | Scarselli F;Tsoi A C .Universal approximation using feedforward neural networks:a survey of some existing methods,and some new results[J].Neural Networks,1998,11(01):15-37. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%