欢迎登录材料期刊网

材料期刊网

高级检索

高品质的预合金粉末是以粉末冶金工艺制备高性能TiAl基合金材料的基础.介绍了目前可用于规模化生产TiAl预合金粉末的各种雾化制备技术,包括惰性气体雾化法、转盘雾化法和等离子旋转电极雾化法,其中惰性气体雾化法又分为等离子感应熔炼定向气雾化法和电极感应熔炼气雾化法.分析了各种雾化制备技术的特点,并对国内外TiAl预合金粉末制备的研究进展进行了综述.

参考文献

[1] 张永刚;韩雅芳;陈国良.金属间化合物材料[M].北京:国防工业出版社,2001:1008-1010.
[2] Wang G X;Dahms M .TiAl-based alloys prepared by elemental powder metallurgy[J].Powder Metallurgy International,1992,24(04):219-225.
[3] J.Moll;B.McTiernan .PM TiAl alloys: the sky's the limit[J].Metal Powder Report,2000(1):18-22.
[4] 王尔德,李小强,胡连喜.粉末冶金法制备TiAl基合金[J].粉末冶金技术,2002(05):287-293.
[5] 刘咏,黄伯云,周科朝,贺跃辉,唐志宏.粉末冶金γ-TiAl基合金研究的最新进展[J].航空材料学报,2001(04):50-55.
[6] TiAl基合金气体雾化粉末显微组织评估和显微偏析[J].Materials Science and Technology: MST: A publication of the Institute of Metals,1996(10):823-830.
[7] Leo V. M. Antony;Ramana G. Reddy .Processes for Production of High-Purity Metal Powders[J].JOM,2003(3):14-18.
[8] Gerling R;H Clemens;Schimansky F P.Powder Metallurgical processing of Intermetallic Gamma Titanium Aluminides[J].Advances in Engineering Materials,2004(06):23-38.
[9] Hohmann M;Diemar W;Ludwig N.Modem systems for ceramic-free powder production[J].Advances in Powder Metallurgy and Particulate Materials,1992(01):27-39.
[10] Larson D J;Liu C T;Miller M K .The alloying effects of tantalum on the microstructure of an α2 + Υtitanium aluminide[J].Materials Science and Engineering A,1999,270(01):1-8.
[11] Gerhard Wegmann;Rainer Gerling;Frank-Peter Schimansky .Temperature induced porosity in hot isostatically pressed gamma titanium aluminide alloy powders[J].Acta materialia,2003(3):741-752.
[12] Kaufnann A R .Production of Pure Spherical Powders[P].US,3802816,1974-04-09.
[13] Fuchs G E;Hayden S Z .Microstructural evaluation of as solidified and heat-treated Υ-TiAl based powders[J].Materials Science and Engineering A,1992,152(01):277-282.
[14] Cai X Z;Eylon D.Effect of cooling rate on the microstructure of PREP Ti3A1 base alloy powder (plasma rotating electrode processing)[A].London:Institute of Material,1996:467-472.
[15] Jones S A;Kauman M J .Phase equilibria and transformations in intermediate titanium aluminum alloys[J].Acta Metallurgica Et Materialia,1993,41(02):387-398.
[16] Tonner C;Rosier J;Baumann R.Influence of microstructure on the tensile and creep properties of titanium aluminides processed by powder metallurgy[A].Warrendale:TMS,1993:241-245.
[17] Gerling R;Schimansky F P;Wegnann G.Gas atomization of titanium based alloys and related powder metallurgical processing routes[A].Las Vegas:Elsevier Science,2000:3-9.
[18] Minoru Nishida;Yasuhiro Morizono;Tomoaki Kai .Microstructure Dependence of Compactibility of Rapidly Solidified Ti-Rich TiAl Alloy Powders Produced by Plasma Rotating Electrode Processes[J].Materials transactions,1997(4):334-343.
[19] Yasuhiro Morizono;Ryohei Kumagae;Minoru Nishida .Superplasticity-like Behavior of Rapidly Solidified Ti-rich TiAl Powders and its Application to In-situ Sintering Bonding[J].Materials transactions,2003(4):754-758.
[20] 王衍行,赵丽明,林均品,王艳丽,曲选辉,陈国良.高Nb-TiAl合金粉的制备及其特性[J].航空材料学报,2007(05):34-39.
[21] 郎泽保,崔玉友,王亮,徐磊,张绪虎.TiAl系金属间化合物球型预合金粉末制备及粉末冶金工艺研究[J].宇航材料工艺,2007(06):70-73.
[22] 徐磊,柏春光,王刚,崔玉友,杨锐.包覆热轧制备粉末冶金TiAl合金板材及热加工行为研究[J].钛工业进展,2011(05):17-22.
[23] 王刚,郑卓,常立涛,徐磊,崔玉友,杨锐.TiAl预合金粉末的表征和后续致密化显微组织特点[J].金属学报,2011(10):1263-1269.
[24] 蔡学章,D.Eylon.PREP TiAl基合金粉末冷凝组织特性[J].稀有金属材料与工程,1994(05):41-47.
[25] 赵永骞,兰涛,张宝惠.快速冷凝Ti3Al基合金粉末性能研究[J].稀有金属材料与工程,1992(06):40-44.
[26] 杨鑫,奚正平,刘咏,汤慧萍,贺卫卫,贾文鹏.等离子旋转电极法制备钛铝粉末性能表征[J].稀有金属材料与工程,2010(12):2251-2254.
[27] Zhang W;Liu Y;Liu B et al.Comparative assessment of microstructure and compressive behaviours of PM TiAI alloyprepared by HIP and pseudo-HIP technology[J].Powder Metallurgy,2011,54(02):133-141.
[28] Li Wang;Yong Liu;Wei Zhang .Optimization of pack parameters for hot deformation of TiAl alloys[J].Intermetallics,2011(1):68-74.
[29] Wang H;Liu Y;Zhang W.Development of constitutive relationship for the hot deformation of Ti-47Al-2Cr-2Nb-0.2W alloy[J].Current Advances in Materials and Processes,2011(156/157):625-632.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%