生物医用材料领域中,细胞与材料间的相互作用是研究的主要课题.材料表面的微观结构对细胞的生物调控作用更为重要.纳米材料因具有一些独特的效应,如体积效应和表面效应,有利于细胞黏附、增殖和功能表达,因而作为生物医用材料特别是组织工程支架材料具有良好的应用前景.目前用于生物医用研究的纳米材料主要有无机纳米材料、高分子纳米材料以及复合纳米材料等.仿生纳米材料的研究和利用极大地促进了组织工程学的发展.本文就近年来纳米材料在生物医用材料尤其是组织工程支架材料中的应用研究现状进行了综述.
参考文献
[1] | David I A;Scherer GW .An Organic-Iorganic Single-Phase Composite[J].Chem Mater,1995,7:1957-1967. |
[2] | Jackson C L;Bauer B J;Nakatani I A et al.Synthesis of Hybrid Organic-Iorganic Materials from Interpenetrating Polymer Network Chemistry[J].Chem Mater,1996,8:727-733. |
[3] | Bao G .Mecbanics of biomolecules[J].J Mec Phys Solids,2002,50(11):2237-2274. |
[4] | 姚康德;成国祥.智能材料[M].北京:化学工业出版社,2002 |
[5] | Desai TA .Micro- and nanoscale structures for tissue engineering constructs.[J].Medical engineering and physics,2000(9):595-606. |
[6] | Kim,BS;Mooney,DJ .Development of biocompatible synthetic extracellular matrices for tissue engineering.[J].Trends in Biotechnology,1998(5):224-230. |
[7] | Flemming RG;Murphy CJ;Abrams GA;Goodman SL;Nealey PF .Effects of synthetic micro- and nano-structured surfaces on cell behavior.[J].Biomaterials,1999(6):573-588. |
[8] | Xie Y;Sproule T;Li Y;Powell H;Lannutti JJ;Kniss DA .Nanoscale modifications of PET polymer surfaces via oxygen-plasma discharge yield minimal changes in attachment and growth of mammalian epithelial and mesenchymal cells in vitro.[J].Journal of biomedical materials research, Part B. Applied biomaterials,2002(2):234-245. |
[9] | Wojciak-Stothard B;Curtis A;Monaghan W et al.Guidance and ac-tivation of murine macrophages by nanometricscale topography[J].Exp Cell Res,1996,223:426-435. |
[10] | Dalby MJ;Yarwood SJ;Riehle MO.Increasing fibroblast response to materials using nanotopograph:morphological and genetic measurements of cell response to 13-nm-high polymer demixed islands[J].Experimental Cell Research,2002(276):1-9. |
[11] | Dalby MJ;Riehle MO;Johnstone JH.Polymerdemixed nanotopography:Control of fibroblast spreading and proliferation[J].Tissue Engineering,2002(06):1099-1108. |
[12] | Dalby MJ.;Childs S.;Riehle MO.;Johnstone HJH.;Affrossman S.;Curtis ASG. .Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time[J].Biomaterials,2003(6):927-935. |
[13] | Dalby MJ io.gla.ac.uk;Riehle MO;Johnstone H;Affrossman S;Curtis AS .In vitro reaction of endothelial cells to polymer demixed nanotopography.[J].Biomaterials,2002(14):2945-2954. |
[14] | 姜忠义;成国祥.纳米生物技术[M].北京:化学工业出版社,2003 |
[15] | 李大力,李丹,汪信.无机纳米粒子对人类细胞培养及植物组培苗影响的研究[J].徐州师范大学学报(自然科学版),2002(02):51-53. |
[16] | 曹献英,闫玉华,杨美娟,张珠.肝细胞原代培养的技术改良及电镜观察[J].武汉理工大学学报,2001(04):35-36. |
[17] | 韩雪,杨晓东.纳米复合烤瓷材料的生物相容性试验[J].中国医科大学学报,2001(02):105-107. |
[18] | Nagaoka S;Ashiba K;Okuyama Y;Kawakami H .Interaction between fibroblast cells and fluorinated polyimide with nano-modified surface.[J].The international journal of artificial organs,2003(4):339-345. |
[19] | Yoshimoto H;Shin YM;Terai H;Vacanti JP .A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering.[J].Biomaterials,2003(12):2077-2082. |
[20] | Wan-Ju Li;Cato T. Laurencin;Edward J. Caterson .Electrospun nanofibrous structure: A novel scaffold for tissue engineering[J].Journal of biomedical materials research, Part B. Applied biomaterials,2002(4):613-621. |
[21] | Prokop A.Bioartificial organs in the twenty-first century[J].Ann New York Acad Sci,2001(944):472-490. |
[22] | Kikuchi M;Itoh S;Ichinose S;Shinomiya K;Tanaka J .Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo.[J].Biomaterials,2001(13):1705-1711. |
[23] | Tan W;Krishnaraj R;Desai TA .Evaluation of nanostructured composite collagen--chitosan matrices for tissue engineering.[J].Tissue engineering,2001(2):203-210. |
[24] | Jean-Marie Lehn .Toward complex matter: Supramolecular chemistry and self-organization[J].Proceedings of the National Academy of Sciences of the United States of America,2002(8):4763-4768. |
[25] | Hartgerink JD;Beniash E;Stupp SI .Self-assembly and mineralization of peptide-amphiphile nanofibers[J].Science,2001,294(5547):1684-1688. |
[26] | Hartgerink JeffreyD;Beniash Elia;Stupp SamuelI .Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials.[J].Proceedings of the National Academy of Sciences of the United States of America,2002(8):5133-5138. |
[27] | Niece KL;Hartgerink JD;Dormers JJ et al.Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction[J].J Am Chem Soc,2003,125(24):7146-7147. |
[28] | Gu HY.;Chen Z.;Sa RX.;Yuan SS.;Chen HY.;Ding YT.;Yu AM. .The immobilization of hepatocytes on 24 nm-sized gold colloid for enhanced hepatocytes proliferation[J].Biomaterials,2004(17):3445-3451. |
[29] | Zhang S;Holmes TC;Dipersio CM et al.Self-complementary oligopeptide matrices support mammalian cell attachment[J].Biomaterials,1995,16:1385-1393. |
[30] | Kisiday J;Jin M;Kurz B;Hung H;Semino C;Zhang S;Grodzinsky AJ .Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair.[J].Proceedings of the National Academy of Sciences of the United States of America,2002(15):9996-10001. |
[31] | Hench LL;Polak JM .Third-generation biomedical materials[J].Science,2002,295(5557):1014-1020. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%