欢迎登录材料期刊网

材料期刊网

高级检索

细胞粘附与铺展是三维水凝胶基质中贴壁依赖型细胞存活所必须的两个条件,将细胞粘附位点的引入和凝胶中细胞铺展空间的构建相结合,提出了同时含有RGD多肽和明胶微球的粘附型大孔水凝胶模型,以促进细胞在其中的铺展与分化。该模型采用光交联海藻酸钠水凝胶为基础,同时引入RGD多肽和明胶微球,通过RGD多肽的共价接枝为细胞粘附提供前提,利用明胶微球在37℃下的快速降解性,为细胞的进一步增殖和铺展以及分化提供所需空间。结果显示,明胶微球的加入提高了凝胶的力学性能,同时降低了凝胶的溶胀率。 RGD和明胶微球的引入能够很好地支持 MG-63细胞在其中的增殖、粘附与铺展,并显著提高其碱性磷酸酶活性,上调成骨相关基因( BMP-2, COL-I和 OCN)的表达。而在不含微球的 RGD-ALG 和 ALG凝胶中,细胞铺展及成骨分化均受到很大抑制。

Adhesion and spreading of anchorage-dependent cells are two essential factors for their subsequent settlement and commitment in 3D hydrogel substrate.An adhesive macroporous alginate hydrogel system was suggested here to over-come the low cell affinity and high cell constraint of hydrogel substrates for cells encapsulated in them .RGD peptide was grafted onto the alginate molecule to support cell adhesion and gelatin microspheres were introduced into photocrosslinked alginate hydrogels to create macropores by their degradation at 37℃for cell spreading and facilitate cell ingrowth as well as prolonged cell survival within hydrogels .With the incorporation of gelatin microspheres , the hybrid alginate hydrogels ex-hibited significantly enhanced mechanical properties and decreased swelling ratios .MG-63 cells in alginate hydrogel coop-erated with RGD and gelatin microspheres exhibited a rapid proliferation and spread gradually with prolonged culture time , and their osteogenic differentiation was greatly facilitated, such as the high expression of BMP-2, COL-I and OCN genes. While in the pure alginate hydrogel ( ALG) and hydrogels only capable of cell affinity ( RGD-ALG) , cells could just ex-hibit either a rounded shape or a spreading morphology with a very limited degree , and the osteogenic differentiation was also inhibited.

参考文献

[1] Kuen Yong Lee;Tissue Engineering .Hydrogels for tissue engineering[J].Chemical Reviews,2001(7):1869-1879.
[2] Elisseeff J;McIntosh W;Anseth K;Riley S;Ragan P;Langer R .Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks.[J].Journal of biomedical materials research, Part B. Applied biomaterials,2000(2):164-171.
[3] Wang C;Varshney RR;Wang DA .Therapeutic cell delivery and fate control in hydrogels and hydrogel hybrids.[J].Advanced drug delivery reviews,2010(7/8):699-710.
[4] Meredith Jr J;Fazeli B;Schwartz M .The Extracellular Matrix as A Cell Survival Factor[J].Molecular Biology of the Cell,1993,4:953.
[5] Hern DL;Hubbell JA .Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing.[J].Journal of biomedical materials research, Part B. Applied biomaterials,1998(2):266-276.
[6] Matthias P. Lutolf;George P. Raeber;Andreas H. Zisch;Nicola Tirelli;Jeffrey A. Hubbell .Cell-Responsive Synthetic Hydrogels[J].Advanced Materials,2003(11):888-892.
[7] Sun, J.;Xiao, W.;Tang, Y.;Li, K.;Fan, H. .Biomimetic interpenetrating polymer network hydrogels based on methacrylated alginate and collagen for 3D pre-osteoblast spreading and osteogenic differentiation[J].Soft matter,2012(8):2398-2404.
[8] Wenqian Xiao;Wenlong Liu;Jing Sun .Ultrasonication and Genipin Cross-Linking to Prepare Novel Silk Fibroin-Gelatin Composite Hydrogel[J].Journal of Bioactive and Compatible Polymers,2012(4):327-341.
[9] Grinnell F .Fibroblast biology in three-dimensional collagen matrices [Review][J].Trends in Cell Biology,2003(5):264-269.
[10] Fringer J;Grinnell F .Fibroblast quiescence in floating collagen matrices: decrease in serum activation of MEK and Raf but not Ras.[J].The Journal of biological chemistry,2003(23):20612-20617.
[11] Brian M. Gillette;Jacob A. Jensen;Meixin Wang;Jason Tchao;Samuel K. Sia .Dynamic Hydrogels: Switching of 3D Microenvironments Using Two-Component Naturally Derived Extracellular Matrices[J].Advanced Materials,2010(6):686-691.
[12] Liu Y;Chan-Park MB .Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering.[J].Biomaterials,2009(2):196-207.
[13] Sakai S;Ito S;Ogushi Y;Hashimoto I;Hosoda N;Sawae Y;Kawakami K .Enzymatically fabricated and degradable microcapsules for production of multicellular spheroids with well-defined diameters of less than 150 microm.[J].Biomaterials,2009(30):5937-5942.
[14] Ting Ting Lau;hunming Wang;Dong-An Wang .Cell delivery with genipin crosslinked gelatin microspheres in hydrogel/microcarrier composite[J].Composites science and technology,2010(13):1909-1914.
[15] Photodegradable Hydrogels for Dynamic Tuning of Physical and Chemical Properties[J].Science,2009(Apr.3 TN.5923):59.
[16] Chou A I;Nicoll S B .Characterization of Photocrosslinked Algi-nate Hydrogels for Nucleus Pulposus Cell Encapsulation[J].Journal of Biomedical Materials Research Part A,2009,91:187-194.
[17] Engler AJ;Sen S;Sweeney HL;Discher DE .Matrix elasticity directs stem cell lineage specification[J].Cell,2006(4):677-689.
[18] Mcdaniel D P;Shaw G A;Elliott J T et al.The Stiffness of Collagen Fibrils Influences Vascular Smooth Muscle Cell Pheno-type[J].Biophysical Journal,2007,92:1759-1769.
[19] Lian J B;Stein G S .Development of The Osteoblast Pheno-type:Molecular Mechanisms Mediating Osteoblast Growth and Differentiation[J].The Iowa Orthopaedic Journal,1995,15:118.
[20] Aubin JE .Advances in the osteoblast lineage.[J].Biochemistry and Cell Biology,1998(6):899-910.
[21] Jundt G;Bergh?user K H;Termine J et al.Osteonectin-A Dif-ferentiation Marker of Bone Cells[J].Cell and Tissue Research,1987,248:409-415.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%