采用体积含量分别为7.1%和14.2%的两种碳纤维各向同性针刺毡为预制体,研究了预制体内部初始碳纤维表面积与自由体积比值( A/V值)对热解碳的等温等压化学气相渗透动力学以及热解碳织态结构变化的影响。实验研究以22.5 kPa纯甲烷为碳源气体,沉积温度为1095℃,气体平均停留时间0.1 s,沉积时间从20 h到120 h不等。热解碳沉积后测量了 C/C复合材料的表观密度、开气孔率、热解碳的真密度及其内部分布。利用正交偏光显微镜测试了热解碳的织态结构。研究结果表明,热解碳的初始沉积过程主要受气相-表面形核机制控制,随着致密化的进行,逐渐转变为表面生长机制。这种从形核到表面生长机制的转化,导致了热解碳的织态结构相应地从低织构向中织构、最后到高织构的转化。上述沉积机制和结构的变化,都是由于碳纤维编制体初始A/V值的不同以及由于热解碳不断沉积导致的A/V值的不断增大引起的。增大碳纤维编制体的初始A/V值,可以导致这些转化在致密化过程中提前发生。上述结果能够很好地证明以前相关研究的结论。
Isothermal, isobaric chemical vapor infiltration of carbon fiber felts with fiber volume fractions of 7.1% and 14.2% were investigated to analyze the influence of initial surface area /volume ratio, [A/V], of the fiber preform on infiltration kinetics and texture of infiltrated carbon .Experiments were performed at a temperature of 1 095 ℃, a methane pressure of 22.5 kPa, a residence time of 0.1 s and infiltration times being stepwise increased from 20 to 120 h.Global bulk density and bulk density , porosity as well as density of matrix carbon as a function of infiltration depth were deter-mined.Carbon texture was analyzed with polarized-light microscopy.The results show that infiltration kinetics in the initial stage of infiltration are dominated by the nucleation mechanism and afterwards by the growth mechanism of carbon forma-tion.These changes of deposition chemistry and kinetics lead to changes of carbon texture from low /medium to medium /high.All changes are caused by an increase of [ A/V〗ratio.They occur in a significantly earlier stage in the case of the felt with the higher initial [ A/V〗ratio, as to be expected.These results are a perfect confirmation of conclusions from ear-lier studies.
参考文献
[1] | Hüttinger K J .CVD in Hot Wall Reactors-the Interaction between Homogeneous Gas-Phase and Heterogeneous Surface Reactions[J].Advanced Materials,1998,4(04):151-158. |
[2] | Hüttinger K J.Fundamentals of Chemical Vapor Deposition in Hot Wall Reactors[J].World of Carbon,2003:75-85. |
[3] | Becker A.;Huttinger KJ. .Chemistry and kinetics of chemical vapor deposition of pyrocarbon - IV - Pyrocarbon deposition from methane in the low temperature regime[J].Carbon: An International Journal Sponsored by the American Carbon Society,1998(3):213-224. |
[4] | Brüggert M;Hu Z J;Hüttinger K J .Chemistry and Kinetics of Chemical Vapor Deposition of Pyrocarbon:VI.Influence of Tem-perature Using Methane as a Carbon Source[J].CARBON,1999,37(12):2021-2030. |
[5] | Benzinger W;Hüttinger K J .Chemical Vapor Infiltration of Pyro-carbon:I.Some Kinetic Considerations[J].CARBON,1996,34(12):1465-1471. |
[6] | Benzinger W.;Huttinger K.J. .Chemistry and kinetics of chemical vapor infiltration of pyrocarbon-V.Infiltration of carbon fiber felt[J].Carbon: An International Journal Sponsored by the American Carbon Society,1999(6):941-946. |
[7] | Benzinger W.;Huttinger K.J. .Chemistry and kinetics of chemical vapor infiltration of pyrocarbon-VI. Mechanical and structural properties of infiltrated carbon fiber felt[J].Carbon: An International Journal Sponsored by the American Carbon Society,1999(8):1311-1322. |
[8] | Teubner M;Antes J;Hu Z et al.The Role of the Substrate Surface Area/Reactor Volume Ratio in Chemistry and Kinetics of Chemical Vapor Deposition[J].J de Physique IV,1999,9:79-84. |
[9] | Antes J;Hu Z J;Zhang W G et al.Chemistry and Kinetics of Chemical Vapor Deposition of Pyrocarbon:VII.Confirmation of the Influence of the Substrate Surface Area/Reactor Volume Ratio[J].CARBON,1999,37(12):2031-2039. |
[10] | Zhang WG.;Huttinger KJ. .Chemical vapor deposition of carbon from methane at various pressures, partial pressures and substrate surface area/reactor volume ratios[J].Journal of Materials Science,2001(14):3503-3510. |
[11] | Hu ZJ.;Huttinger KJ. .Chemistry and kinetics of chemical vapor deposition of pyrocarbon - VIII. Carbon deposition from methane at low pressures[J].Carbon: An International Journal Sponsored by the American Carbon Society,2001(3):433-441. |
[12] | Z. J. Hu;K. J. Huttinger .Influence of the surface area/volume ratio on the chemistry of carbon deposition from methane[J].Carbon: An International Journal Sponsored by the American Carbon Society,2003(8):1501-1508. |
[13] | Becker A.;Huttinger KJ.;Hu Z. .A hydrogen inhibition model of carbon deposition from light hydrocarbons[J].Fuel,2000(13):1573-1580. |
[14] | Zhang W G;Hüttinger K J .Chemical Vapor Infiltration of Car-bon-Revised I:Model Simulations[J].CARBON,2001,39(07):1013-1022. |
[15] | Hu Z;Hüttinger K J .Chemical Vapor Infiltration of Carbon-Re-vised II:Experimental Results[J].CARBON,2001,39(07):1023-1032. |
[16] | Zhang W G;Hüttinger K J .Simulation Studies on the Chemical Vapor Infiltration of Carbon[J].Composites Science and Tech-nology,2002,62(15):1947-1955. |
[17] | M.Guellali;R.Oberacker;M.J.Hoffmann;W.G.Zhang;K.J.Huttinger .Textures of pyrolytic carbon formed in the chemical vapor infiltration of capillaries[J].Carbon: An International Journal Sponsored by the American Carbon Society,2003(1):97-104. |
[18] | Zhang WG.;Hu ZJ.;Huttinger KJ. .Chemical vapor infiltration of carbon fiber felt: optimization of densification and carbon microstructure[J].Carbon: An International Journal Sponsored by the American Carbon Society,2002(14):2529-2545. |
[19] | Zhang W G;Hüttinger K J .Chemical Vapor Infiltration of 2D Carbon Fiber Preform:Kinetics of Densification and Carbon Mi-crostructure[J].CARBON,2003,41(12):2325-2337. |
[20] | 张伟刚,K.J. Hüttinger.化学气相沉积与渗透过程中热解炭织态结构生成机理研究[J].新型炭材料,2006(02):185-192. |
[21] | Hu Z;Zhang W G;Hüttinger K J.An Extended Interpretation of Chemical Vapor Infiltration of Carbon[J].J de Physique IV,2001:307-313. |
[22] | B. Reznik;D. Gerthsen;W. Zhang;K.J. Huttinger .Texture changes in the matrix of an infiltrated carbon fiber felt studied by polarized light microscopy and selected area electron diffraction[J].Carbon: An International Journal Sponsored by the American Carbon Society,2003(2):376-380. |
[23] | Zi Jun Hu;Klaus J. Huttinger .Mechanisms of carbon deposition-a kinetic approach[J].Carbon: An International Journal Sponsored by the American Carbon Society,2002(4):624-628. |
[24] | Dong GL.;Huttinger KJ. .Consideration of reaction mechanisms leading to pyrolytic carbon of different textures[J].Carbon: An International Journal Sponsored by the American Carbon Society,2002(14):2515-2528. |
[25] | Reznik B.;Huttinger KJ.;Gerthsen D. .Micro- and nanostructure of the carbon matrix of infiltrated carbon fiber felts[J].Carbon: An International Journal Sponsored by the American Carbon Society,2001(2):215-229. |
[26] | B. Reznik;K.J. Huttinger .On the terminology for Pyrolytic carbon[J].Carbon: An International Journal Sponsored by the American Carbon Society,2002(4):621-624. |
[27] | Bourrat X;Trouvat B;Limousin G et al.Pyrocarbon Anisotro-py as Measured by Electron Diffraction and Polarized Light[J].Journal of Materials Research,2000,15(01):92-101. |
[28] | Bortchagovsky E G;Reznik B;Gerthsen D et al.Optical Properties of Pyrolytic Carbon Deposits Deduced from Measure-ments of Extinction Angle by Polarized Light Microscopy[J].CARBON,2003,41:2427-2451. |
[29] | Jean-Marie Vallerot;Xavier Bourrat .Pyrocarbon optical properties in reflected light[J].Carbon: An International Journal Sponsored by the American Carbon Society,2006(8):1565-1571. |
[30] | Drescher M.;Huttinger KJ.;Dormann E. .Pyrolytic carbon layers - an electron spin resonance analysis[J].Carbon: An International Journal Sponsored by the American Carbon Society,2003(4):773-783. |
[31] | Pfrang A;Hüttinger K J;Schimmel Th .Adhesion Imaging of Carbon Fiber Reinforced Materials in the Pulsed Force Mode of the AFM[J].Surface Interface Anaysis,2002,33:96-100. |
[32] | Chen T F;Reznik B;Gerthsen D et al.Microscopical Study of Carbon/Carbon Composites Obtained by Chemical Vapor Infil-tration of 0°/0°/90°/90°Carbon Diber Preforms[J].CARBON,2005,43(15):3088-3098. |
[33] | Z.J.Hu;W.G.Zhang;K.J.Huttinger;B.Reznik;D.Gerthsen .Influence of pressure, temperature and surface area/volume ratio on the texture of pyrolytic carbon deposited from methane[J].Carbon: An International Journal Sponsored by the American Carbon Society,2003(4):749-758. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%