欢迎登录材料期刊网

材料期刊网

高级检索

微纳尺度材料是指外观尺寸或其基本构成单元在10 nm 到10μm 之间(以下简称微纳尺度)的材料或器件。个案、定性的研究表明微纳尺度材料有以下特性:其性能不能通过外推基于宏观块体材料的知识体系得到,传统的力学测试工具和方法无法满足对微纳尺度材料进行测试的要求,微纳尺度材料通常在多场耦合条件下服役。这些特性要求研究工作者持续不断地寻找和研发新的工具以期实现对微纳尺度材料的可控制备,高通量观测、操控和定量测量。双束聚焦离子束技术不仅因具有纳米级的空间分辨率而具备对微纳尺度材料的高质量成像和动态监测,而且具备纳米分辨率的定点刻蚀、诱导沉积等功能。因此,双束聚焦离子束成为研究微纳尺度材料力学性能的有力工具。综述了近年来聚焦离子束技术在微纳尺度材料类力学性能研究中的应用,并讨论了其局限性和发展趋势。

Micro/nanomaterials refer to the materials or devices with their physical dimension or basic unit size in the range of 10 nm to 10, 000 nm.It has been demonstrated occasionally and qualitatively that the properties of micro/nano-materials exhibit the following characteristics: can not be achieved through extrapolating the knowledge system based on their bulk counterpart;the traditional technologies and methods are insufficient to study them efficiently; multi fields are always involved in the real applications of Micro/nanomaterials.These characteristics require the researchers to find and develop new tools and methods continuously in order to fabricate, monitor, manipulate and test these materials effectively. Dual beam focused ion beam (FIB) can not only be used to image, monitor and manipulate the materials but also has the ability to etch samples to expected geometry and deposit materials for welding et al .at nanometer resolution.Consequent-ly, dual beam FIB has become a powerful tool in the research of nanomechanics .In this paper, the state of the art applica-tions of FIB in nanomechanics research will be reviewed .Its limitation and future development will be also discussed .

参考文献

[1] ZHIWEI SHAN .In Situ TEM Investigation of the Mechanical Behavior of Micronanoscaled Metal Pillars[J].JOM,2012(10):1229-1234.
[2] Shan Z W;Stach E A;Wiezorek J M K et al.Grain Boundary-Mediated Plasticity in Nanocrystalline Nickel[J].SCIENCE,2004,305(5 684):654-657.
[3] Tian L;Cheng Y Q;Shan Z W.Approaching the Ideal E-lastic Limit of Metallic Glasses[J].Nature Communications,2012:3.
[4] Strong crystal size effect on deformation twinning[J].Nature,2010(Jan.21 TN.7279):335.
[5] Z.W.SHAN;RAJA K.MISHRA;S.A.SYED ASF .Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals[J].Nature materials,2008(2):115-119.
[6] Uchic MD;Dimiduk DM;Florando JN;Nix WD .Sample dimensions influence strength and crystal plasticity[J].Science,2004(5686):986-989.
[7] Michael D. Uchic;Paul A. Shade;Dennis M. Dimiduk .Micro-Compression Testing of fcc Metals: A Selected Overview of Experiments and Simulations[J].JOM,2009(3):36-41.
[8] Z. L. Wang .Nanopiezotronics[J].Advanced Materials,2007(6):889-892.
[9] Greer J R;De Hosson J T M .Plasticity in Small-Sized Metallic Systems:Lntrinsic Versus Extrinsic Size Effect[J].Progress in Materials Science,2011,56(06):654-724.
[10] Chen CQ;Shi Y;Zhang YS;Zhu J;Yan YJ .Size dependence of Young's modulus in ZnO nanowires[J].Physical review letters,2006(7):5505-1-5505-4-0.
[11] Z.W.SHAN;RAJA K.MISHRA;S.A.SYED ASF .Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals[J].Nature materials,2008(2):115-119.
[12] Zhang-Jie Wang;Zhi-Wei Shan;Ju Li .Pristine-to-pristine regime of plastic deformation in submicron-sized single crystal gold particles[J].Acta materialia,2012(3):1368-1377.
[13] Z. W. SHAN;G. ADESSO;A. CABOT .Ultrahigh stress and strain in hierarchically structured hollow nanoparticles[J].Nature materials,2008(12):947-952.
[14] Lin Tian;Zhi-Wei Shan;Evan Ma .Ductile necking behavior of nanoscale metallic glasses under uniaxial tension at room temperature[J].Acta materialia,2013(13):4823-4830.
[15] Tian L;Li J;Sun J et al.Visualizing Size-Dependent Deform-ation Mechanism Transition in Sn[J].Scientific Reports,2013,3:2113.
[16] Oden L. Warren;Zhiwei Shan;S. A. Syed Asif;Eric A. Stach;J. W. Morris Jr.;Andrew M. Minor .In situ nanoindentation in the TEM[J].Materials Today,2007(4):59-60.
[17] Deneen J;Mook WM;Minor A;Gerberich WW;Carter CB .In situ deformation of silicon nanospheres[J].Journal of Materials Science,2006(14):4477-4483.
[18] ANDREW M.MINOR;S.A.SYED ASF;ZHIWEI SHAN .A new view of the onset of plasticity during the nanoindentation of aluminium[J].Nature materials,2006(9):697-702.
[19] Zheng K;Wang C;Cheng Y Q.Electron-Beam-Assisted Superplastic Shaping of Nanoscale Amorphous Silica[J].Nat Commun,2010:1.
[20] Brenner S S .Growth and Properties of "Whiskers”[J].Sci-ence,1958,128:568-575.
[21] J. R. Greer;W. C. Oliver;W. D. Nix .Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients[J].Acta materialia,2005(6):1821-1830.
[22] Zhang-Jie Wang;Qing-Jie Li;Zhi-Wei Shan;Ju Li;Jun Sun;Evan Ma .Sample size effects on the large strain bursts in submicron aluminum pillars[J].Applied physics letters,2012(7):071906-1-071906-3.
[23] H. Bei;S. Shim;E.P. George;M.K. Miller;E.G. Herbert;G.M. Pharr .Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique[J].Scripta materialia,2007(5):397-400.
[24] Huang L;Li Q J;Shan Z W et al.A New Regime for Mechan-ical Annealing and Strong Sample-Size Strengthening in Body Centred Cubic Molybdenum[J].Nat Commun,2011,2:547.
[25] Strong crystal size effect on deformation twinning[J].Nature,2010(Jan.21 TN.7279):335.
[26] Volkert C A;Donohue A;Spaepen F .Effect of Sample Size on Seformation in Amorphous Metals[J].Journal of Applied Phys-ics,2008,103(08):083539.
[27] Shan ZW;Li J;Cheng YQ;Minor AM;Asif SAS;Warren OL;Ma E .Plastic flow and failure resistance of metallic glass: Insight from in situ compression of nanopillars[J].Physical review, B. Condensed matter and materials physics,2008(15):155419-1-155419-6-0.
[28] C.-C. Wang;J. Ding;Y.-Q. Cheng .Sample size matters for Al_(88)Fe_7Gd_5 metallic glass: Smaller is stronger[J].Acta materialia,2012(13/14):5370-5379.
[29] D.M. Norfleet;P.M. Sarosi;S. Manchiraju .Transformation-induced plasticity during pseudoelastic deformation in Ni-Ti microcrystals[J].Acta materialia,2009(12):3549-3561.
[30] Ishitani T;Umemura K;Ohnishi T;Yaguchi T;Kamino T .Improvements in performance of focused ion beam cross-sectioning: aspects of ion-sample interaction.[J].Journal of Electron Microscopy,2004(5):443-449.
[31] Zhang-Jie Wang;Qing-Jie Li;Zhi-Wei Shan;Ju Li;Jun Sun;Evan Ma .Sample size effects on the large strain bursts in submicron aluminum pillars[J].Applied physics letters,2012(7):071906-1-071906-3.
[32] Huang L;Li Q J;Shan Z W.A New Regime for Mechan-ical Annealing and Strong Sample-Size Strengthening in Body Centred Cubic Molybdenum[J].Nat Commun,2011:2.
[33] C. Chisholm;H. Bei;M.B. Lowry .Dislocation starvation and exhaustion hardening in Mo alloy nanofibers[J].Acta materialia,2012(5):2258-2264.
[34] Jang, D.;Gross, C.T.;Greer, J.R. .Effects of size on the strength and deformation mechanism in Zr-based metallic glasses[J].International Journal of Plasticity,2011(6):858-867.
[35] H.GUO;P.F.YAN;Y.B.WANG .Tensile ductility and necking of metallic glass[J].Nature materials,2007(10):735-739.
[36] Qingsong Deng;Yongqiang Cheng;Yonghai Yue .Uniform tensile elongation in framed submicron metallic glass specimen in the limit of suppressed shear banding[J].Acta materialia,2011(17):6511-6518.
[37] D. Kiener;W. Grosinger;G. Dehm .A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples[J].Acta materialia,2008(3):580-592.
[38] Wang Z L;Gao R P;Pan Z W et al.Nano-Scale Mechanics of Nanotubes,Nanowires,and Nanobelts[J].Advanced Engineer-ing Materials,2001,3(09):657-661.
[39] Wang Z L;Dai Z R;Gao R P et al.Measuring the Young' s Modulus of Solid Nanowires by in Situ TEM[J].Journal of E-lectron Microscopy,2002,51:S79-S85.
[40] Guo, H.;Chen, K.;Oh, Y.;Wang, K.;Dejoie, C.;Syed Asif, S.A.;Warren, O.L.;Shan, Z.W.;Wu, J.;Minor, A.M. .Mechanics and dynamics of the strain-induced M1-M2 structural phase transition in individual VO_2 nanowires[J].Nano letters,2011(8):3207-3213.
[41] Hua Guo;Kevin Wang;Yu Deng;Y. Oh;S. A. Syed Asif;O. L. Warren;Z. W. Shan;J. Wu;A. M. Minor .Nanomechanical actuation from phase transitions in individual VO_2 micro-beams[J].Applied physics letters,2013(23):231909-1-231909-5.
[42] Yue, Y.;Liu, P.;Zhang, Z.;Han, X.;Ma, E. .Approaching the theoretical elastic strain limit in copper nanowires[J].Nano letters,2011(8):3151-3155.
[43] 张展铭 .Mechanical Property of Platinum Deposited by Focused Ion Beam(聚焦离子束沉积Pt的力学性能研究)[D].Xi′an:Xi′an Jiaotong University,2011.
[44] C. Motz;T. Schoberl;R. Pippan .Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique[J].Acta materialia,2005(15):4269-4279.
[45] C. Motz;D. Weygand;J. Senger .Micro-bending tests: A comparison between three-dimensional discrete dislocation dynamics simulations and experiments[J].Acta materialia,2008(9):1942-1955.
[46] Eralp Demir;Dierk Raabe;Franz Roters .The mechanical size effect as a mean-field breakdown phenomenon: Example of microscale single crystal beam bending[J].Acta materialia,2010(5):1876-1886.
[47] Prenitzer BI.;Urbanik-Shannon CA.;Giannuzzi LA.;Brown SR.;Irwin RB. Shofner TL.;Stevie FA. .The correlation between ion beam/material interactions and practical FIB specimen preparation[J].Microscopy and microanalysis: The official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada,2003(3):216-236.
[48] Study of temperature rise during focused Ga ion beam irradiation using nanothermo-probe[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2009(2):475.
[49] Giannuzzi L A;Geurts R;Ringnalda J .2 keV Ga+FIB Mill-ing for Reducing Amorphous Damage in Silicon[J].Microscopy and Microanalysis,2005,11(z02):828-829.
[50] D. Kiener;C. Motz;M. Rester;M. Jenko;G. Dehm .FIB damage of Cu and possible consequences for miniaturized mechanical tests[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(1-2):262-272.
[51] Sven Olliges;Patric Gruber;Anita Bardill .Converting polycrystals into single crystals - Selective grain growth by high-energy ion bombardment[J].Acta materialia,2006(20):5393-5399.
[52] Michael J .Gallium Phase Formation in Cu During 30 kV Ga+FIB Milling[J].Microscopy and Microanalysis,2006,12(z02):1248-1249.
[53] Casey JD.;Phaneuf M.;Chandler C.;Megorden M.;Noll KE.;Schuman R. Gannon TJ.;Krechmer A.;Monforte D.;Antoniou N.;Bassom N.;Li J. Carleson P.;Huynh C. .Copper device editing: Strategy for focused ion beam milling of copper[J].Journal of Vacuum Science & Technology, B. Microelectronics and Nanometer Structures: Processing, Measurement and Phenomena,2002(6):2682-2685.
[54] Y. H. Liu;F. Zhao;Y. L. Li;M. W. Chen .Deformation behavior of metallic glass thin films[J].Journal of Applied Physics,2012(6):063504-1-063504-4.
[55] Magagnosc D J;Ehrbar R;Kumar G.Tunable Tensile Ductility in Metallic Glasses[J].Scientific Reports,2013:3.
[56] Ishitani T;Kaga H .Calculation of Local Temperature Rise in Focused-Ion-Beam Sample Preparation[J].Journal of Electron Microscopy,1995,44(05):331-336.
[57] C. A. Volkert;A.M. Minor .Focused Ion Beam Microscopy and Micromachining[J].MRS bulletin,2007(5):389-395.
[58] 刘同娟.FIB-SEM-Ar″三束″显微镜[J].电子工业专用设备,2008(10):53-55.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%