欢迎登录材料期刊网

材料期刊网

高级检索

引述了Ta电容器与Al电容器、多层陶瓷电容器相比突出的性能与应用特征,分析了Ta电容器片式化、小型化促进电容器级Ta粉高比容化发展的新趋势,叙述了航空、航天和军工领域对高压电容器高可靠性能的需求,以及对中高压Ta粉向更高电压、更低SER方向发展的引领,回顾了电容器用高比容Ta粉、中高压Ta粉发展应用进程,介绍了经典氟钽酸钾(K2 TaF7)金属Na还原法、电子束熔炼法、球磨片式化法生产的高比容Ta粉、高压Ta粉、中压(片状)Ta粉的性能、产品品级及关键技术,分析了30~80 kμFV/g Ta粉耐压性能影响因素,介绍了Ta粉高比容化、高压化新技术、装置、产品形貌、性能及优缺点,在此基础上提出了电容器级Ta粉高比容化、高压化创新进步的思路。

This paper cites the characteristics of tantalum capacitors,applications and application characteristics of alu-minum capacitors and multilayer ceramic capacitors.It analyzes the new trends that the chip-based and miniaturization tantalum capacitors led capacitor grade tantalum powder to higher capacity.It describes the challenges of the demand for high reliability in high-voltage tantalum powder of aviation,aerospace and military field voltage capacitor to a higher volt-age and lower ESR direction.It reviews the application development process of the capacitor tantalum powder with high ca-pacitance tantalum powder,high voltage tantalum powder and medium voltage (flake)tantalum powder.It analyzes the performance,product grades and key technologies of high capacitance tantalum powder,high voltage tantalum powder and medium voltage(flake)tantalum powder by methods of the classical methods of potassium tantalum fluoride (K2TaF7)so-dium metal reduction,electron beam melting and ball milled production.For 30~80 kμFV/g tantalum powder,the influ-ence factors of withstand voltage performance have been analyzed.Finally,it presents new technologies,devices,prod-ucts morphology,performance,advantages and disadvantages of the high capacitance tantalum powder and high voltage technology.On the basis of capacitor grade tantalum powder,this paper points out sustainable development ideas of higher capacitance and higher voltage for tantalum capacitors.

参考文献

[1] 刘江林 .Ta电容的作用特性特点[EB/OL].http://club.1688.com/article/4463739.html,2014-06-20.
[2] 何季麟;潘伦涛;卢振达.电容器级Ta 粉的技术及工程化进展[J].Pro-ceedings of Tantalum Niobium Academic papers,2008:41-49.
[3] 钟海云,刘红东,卢振达,潘伦桃.电容器级钽粉的高比容化研究进展[J].电子元件与材料,2000(04):40-41.
[4] 宋金荣 .高压大容量低ESR液体Ta电容器工作电解质的研究[D].Tian-jin:Tianjin University,2005.
[5] 郭青蔚;王肇信.现代铌 Ta 冶金[M].北京:冶金工业出版社,2009
[6] 吴全兴.电容器用铌粉和钽粉制备技术的进展[J].稀有金属快报,2006(06):1-5.
[7] 何季麟;李海军;张学清.等离子诱导合成纳米 Ta粉研究[A].,2005:1-5.
[8] 朱鸿民;何季麟;乔芝郁 et al.微细 Ta和/或铌粉末的处理方法和由该方法制得的粉末[P].CN1449879 ,2003-10-22.
[9] 朱鸿民;何季麟;曹战民.冶金研究[M].北京:冶金工业出版社,2003:356-359.
[10] 李军义,刘卫国,赵红运,侯俊峰,袁强辉.电解法制备钽粉的研究[J].宁夏工程技术,2008(02):124-126.
[11] Nicholas Glumac;Bernard H Kear;Ganesh Skandan et al.Combuation Flame Synthesis of Nanophase Materials[P].US005876683A,1999-03-02.
[12] Lee J Rosen;Richard L.Axelbaum et al.Tightly Agglomera-ted Non-Oxide Particles and Method for Producing the Same[P].US 2003/0075011 A1,2003-04-24.
[13] 何季麟.世界钽粉生产工艺的发展[J].中国工程科学,2001(12):85-89.
[14] 矢野又三郎 .烧结型电解コンデンサの法[P].Japan,昭52 -4146 5,1977-10-18.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%